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Abstract

Applications of Sensitivity Analysis (SA) encouraged
several Modelica platforms to independently provide
facilities for externally computing Dynamic Parameter
Sensitivities (DPS). FMI specifies an optional function
call for evaluating directional derivatives. On the other
hand, mathematical foundation for uniform represen-
tation of DPS at the Modelica language level has been
established. This has resulted in a platform-independent
approach demonstrated through example libraries. The
paper neutrally hints that already conducted efforts may
converge to the integration of language facilities for
DPS without neglecting to mention many mathematical
difficulties. Surprisingly, many of what could be thought
to be algorithmic obstacles have intuitive solutions along
a minimalist implementation approach.

Keywords: algorithmic differentiation, parameter sensi-
tivities, sensitivity analysis

1 Introduction

1.1 Motivation to DPS
In (Wiechert et al., 2010) one reads:

Simulation tools not only perform numerical
solutions based on the system equations but
also assist the modeler in systems analysis.
Doubtlessly the most important systems anal-
ysis tool is SA ... SA is required for parame-
ter fitting, statistical regression analysis, exper-
imental design, and metabolic control theory.

Analogously, common guidelines for model-based stud-
ies recommend SA to be performed in order to assist the
validity of the conclusions, for example demanded from:

1. Impact Assessment Guide, European Commission

2. Guidance on the development, evaluation and appli-
cation of environmental models, US Environmental
Protection Agency

Hence, facilities for SA are crucial for modelers if offered
by a modeling language or a simulation platform.

Atiyah.Elsheikh@mathemodica.com

While many methods of SA are based on numerical
approaches (Saltelli et al., 2004) their applicability on
typically large-scale Modelica models is questionable. As
an attractive alternative, analytical derivatives of model
outputs w.r.t. model inputs can be exploited. Derivative-
based approaches usually lead to superior results in
terms of accuracy and computational complexity e.g.,
derivative-based global SA methods (Kucherenko and
Iooss, 2016). In Modelica-based terminologies, Dynamic
Parameter Sensitivities (DPS) are sought.

1.2 Applications of DPS

Despite of many applications of SA DPS enable, there
are not so many works conducted within the Modelica
community exploiting DPS. One possible reason for that
(up to the author knowledge) there is no comprehensive
literature focusing on general applications of DPS. In-
stead, their applications are splintered among thousands
of books and articles many of which belong to Chemical
and Bio-Engineering domains. In conjunction with this
paper, (Elsheikh and Kucherenko, 2019) provides a new
classification and initial summary of applications of DPS.
In this technical report!, three families of application sam-
ples are categorized:

1. Modeling-oriented applications:
Applications benefiting from the presence of DPS at
the model level without the need of mathematically
sophisticated post processing or leaving the GUI of
the simulation platform such as control coefficients
(Fell, 1992), local SA, parameter sweeping studies,
model simplification and error analysis

2. statistical-oriented applications:
Statistical tools benefiting from DPS for improved
efficiency in terms of accuracy and computational
complexity such as regression analysis, global SA,
uncertainty analysis and identifiability analysis

3. optimization-oriented applications:
high-level optimization problems with objective

IThe technical report is subject to continuous modification from the
author. Interested readers are welcome to contribute.
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functions expressed in terms of DPS such as experi-
mental design, optimal design and parameter estima-
tion in conjunction with identifiability analysis

Figure 1 demonstrates an application of a DPS-enabled
simulation. The underlying model is capable of addi-
tionally computing DPS. Consequently it was possible to
apply parameter sweeping studies using generic models
within the PSTools library.
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Figure 1. Parameter sweeping study based on one DPS-enabled
simulation with two parameters. Instead of running multiple
simulations, Taylor series expansion is exploited

1.3 Methodologies for Computing DPS

Assume that a given continuous-time Modelica model
equivalently corresponds to an explicit ODE:

x:f(xqut) =0 ) XO(qvtO) :-XO(Q) (1)

where:
e f:time
® g € R" : set of model parameters

e x(g,t) € R™ : set of state variables

The chosen parameters (say p € R"? ) w. r. t. which deriva-
tives are sought are referred to as active parameters. This
work is summarizing some of the available methods for
computing DPS

ox
——(p,t € RxXmp
ap(” )

These methods are:

1. Finite Difference (FD) methods (Section 2): straight-
forward to implement with Modelica but subject to
serious accuracy issues

2. Specialized solvers (Section 3): provided by specific
simulation environments usually accessible by exter-
nal scripting capabilities

3. Equation-based Algorithmic Differentiation (AD)
(Section 4): a platform-independent approach allow-
ing DPS to be present at the language level but re-
quires additional implementation efforts

Section 5 discusses a potential enhancement to the Mod-
elica language by allowing the operator der to take a sec-
ond argument as a model parameter. The discussion in-
cludes some expected obstacles with a minimalist imple-
mentation approach highlighted in Section 6 and an out-
look given in Section 7.

2 Finite Difference Methods

2.1 Implementation

A straightforward way to compute DPS is realizable by a
first-order FD method. Assuming that simulation of Equa-
tion (7) leads to the approximated solution:

xi(p.tx) = xik(p) )

for ie{l1,2,...n,} & k=0,1,2,..

DPS are evaluated by post-processing additional n, simu-
lations each with one slightly modified active parameter:

i xik(p+e;d;) —xix(p)
5 (p) = = 2 (3)
5y wop) g
where:
0;=¢&;-pj, &;: perturbation factor

and e; € R" : the j-th unit vector. However, utilizing
Modelica capabilities, DPS can be implemented via one
simulation as follows:

model FDModel
parameter Real zeta = 0.01 "perturbation";
parameter Real pl=3.0,p2=0.3,p3=...;
MyModel M (pl=pl,p2=p2,...);

MyModel Ml (pl=pl=*zeta+pl,
p2=p2,
R I

MyModel M2 (pl=pl,
p2=p2*zetatp2,
coa)

Real dxdp[nx,np] "DPS";

equation

dxdp[1l,1] = (Ml.x1-M.x1) / (pl=*zeta);
dxdp[1l,2] = (M2.x1-M.x1) / (p2*zeta);
dxdp[2,1] = (M1.x2-M.x2) / (pl=*zeta);
dxdp[2,2] = (M2.x2-M.x2) / (p2+*zeta);

end FDModel;

2.2 Performance

Theoretically, for a Modelica model with say n, nontriv-
ial equations and n, active parameters, the previous im-
plementation results in a model with n,(n, + 1) nontrivial
equations. The current computation paradigms for Mod-
elica simulation environments (at least for the published
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ones) imply that the above model translates to one sin-
gle block of an ODE / a DAE system of equations. This
causes performance drawbacks when considering large
number of active parameters. One may rather attempt
to consider fewer numbers of active parameters and addi-
tional models. However, by extending BLT-based speed-
up techniques (Cellier, 1991) to ODEs / DAEs level rather
than only algebraic equations, advanced compiler strate-
gies may allow independent simulation of smaller blocks
of ODEs / DAEs, even in parallel. Hence, run-time perfor-
mance of FD-methods should not be the main concern but
the accuracy. As mathematically justified in (Elsheikh and
Wiechert, 2012), the study shows that FD is non-reliable
in the context of large-scale nonlinear dynamics. Hence
FD, in the way implemented in this subsection, should not
be the chosen approach for computing DPS.

2.3 Applying FD within the PSTools Library

Employing FD for computing DPS can still be exploited
only as a first experimental step, in particular if advanced
FD strategies and more accurate formulas are employed.
This is also useful to validate other approaches for com-
puting DPS. The PSTools library provides modelers capa-
bilities for computing DPS of arbitrary Modelica models.
Given a Modelica model M, the first step is to parameter-
ize the model under consideration as follows?:

model ParM
extends PSTools.Utilities.Parameterized (

NP = 2,

_P = {0.4, 0.5 / 3600},

PNAME = {"pl", "p2"},

NX = 4,

X = {_M.x1, _M.x2},

XNAME = {"x1", "x2"});
protected

M _M(pl = _P[1], p2 = _P[2]);
end ParM;

In this way, the active parameters and the significant vari-
able of the model M are specified. Alternatively, exploit-
ing enumeration classes is also possible:

model ParM
extends
PSTools.Utilities.EnumParameterized(

redeclare type ActivePars =
enumeration (pl,p2),

_P = {0.4, 0.5 / 3600},

redeclare type SignificantVars =
enumeration (x1,x2));

protected
M _M(pl = _P[ActivePars.pl],
p2 = _P[ActivePars.p2]);
equation
_X[SignificantVars.x1l] = _M.x1;
_X[SignificantVars.x2] = _M.x2;

end ParM;

2other styles other than declaring the model under consideration in a
protected section are also realizable

Once a model under consideration is a subclass of
PSTools. Utilities. Parameterized, it is straightforward to
employ advanced capabilities within the PSTools library
for computing DPS as follows:

model FDParM
PSTools.PS.FD.CD2
PS (redeclare replaceable model
ParModel = ParM);

Real g_x1_pl, g_x1_p2, g_x2_pl, g_x2_p2;

equation

g_x1_pl = PS.g
g_xl_p2 = PS.g
g_x2_pl = PS.g
g_x2_p2 = PS.g

end FDParM;

In this way DPS are computed using a central difference
formula of order two. Figure 2 demonstrates the trajec-
tories of DPS for some chosen significant variables w.r.t.
some active parameters for a Modelica model in the Bio-
engineering domain with 10 significant variables and 9 ac-
tive parameters resulting in 90 trajectories for DPS.
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Figure 2. Some trajectories of DPS of a Model from Bio-
Engineering domain

3 Specialized Solvers

3.1 Approach

There are specialized numerical solvers, e.g. Sundials
package (Hindmarsh et al., 2005) or DSPACK (Petzold
et al., 2006) that can be employed for computing DPS.
This is done by numerical integration of the sensitivity
system composed of the ODE (1) together with sensitivity
subsystems:

xp(to) = 9xo(p)/dp

obtained by differentiating ODE (1) w.r.t. p. Open-
Modelica and Wolfram SystemModeler exploit such
solvers with the help of external scripting capabili-
ties. Dymola can be coupled with the DSPack solver
as shown in (Wolf et al., 2008). FMI2.0 specifies a

xp:fxxp +fp , 4)
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functionality for evaluating partial derivatives of an
FMU (fimi2GetDirectionalDerivative). Due to appar-
ent implementation overhead this functionality is optional.

A common way to compute the required partial derivatives
fxand f, is to employ classical AD techniques (Naumann,
2012) (cf. www.autodiff.org). The simpler way to
accomplish that is via a computational approach for for-
ward differentiation, cf. next Subsection. Alternatively,
advanced heuristics based on FD schemes can be utilized.
Instead of direct numerical integration of a system of size
ny(np+ 1), couple of methods exist with improved perfor-
mance efficiency (Maly and Petzold, 1996; Feehery et al.,
1997). These methods attempt to exploit the linearized
form of a sensitivity system and the structure of its ex-
tended Jacobian.

3.2 Computation of Partial Derivatives

Given the equation system f from (1), an AD algorithm
in forward mode is capable of computing the s.c. tangent
linear model y corresponding to directional derivatives of
f w.r.t. a user-defined input. Formally, y is computed as:

d
=L

&)
where u € {x,p} and s € R is a seed vector. Several
works related to evaluation of the Jacobian (i.e. fi(f) €
R"™*") via AD in Modelica compilers have been reported
(Olsson et al., 2005; Andersson et al., 2010; Braun et al.,
2011). Given that x = (x1,x2,...,%,,)!, the term f; is ac-
cumulated by letting s ranges over the Cartesian basis of
R as follows:

fe= [y(xaei)]_ - [g.el} =12,

=12, =12,....nx

_[9r
| 9x; i=1.2,....1

where e; is the i-th unit vector in R" and each iteration
i computes the i-th column in f,. If f is expressed as a
functional unit within a program P, AD produces another
program P’ that includes evaluation of f together with y.
This implies that the program P’ needs to get repeatedly
evaluated for n, (n,) times in order to compute f (f,)
with potentially common intermediate computations
being repeatedly performed.

(6)

A possibility to reduce such excessive evaluations is to ex-
ploit sparsity patterns of object-oriented Modelica models.
In this way, many directional derivatives can be simulta-
neously computed by compressing many unit vectors into
the seed vector s (Braun et al., 2012). However, even with
this technique, it is not a wonder that straightforward sym-
bolic differentiation outperforms AD w.r.t. runtime perfor-
mance as reported in (Akesson et al., 2012). In the case of
np > ny, excessive computational efforts can be avoided

by following a backward AD approach as demonstrated
in (Braun et al., 2017). (Hannemann-Tamas et al., 2012)
shows another approach for computing first and second-
order DPS using adjoint sensitivity analysis applied to a
flattened Modelica model.

4 Equation-based AD for Modelica

So far demonstrated reliable approaches for computing
DPS are limited to external solutions (FMI) or non-unified
platform-dependent additional services. In contrary, a
platform-independent approach to realize DPS is to ex-
ploit equation-based AD technique with which DPS is
modeled using Modelica syntax. Given a Modelica model
(or a library) DPS are modeled by systematically extend-
ing every base component by another component addition-
ally including entities and equations for the sensitivity sys-
tem. Then, a top-level model is slightly changed by spec-
ifying the set of active parameters.

4.1 Example: The ADGenKinetics Library

The ADGenKinetics library (Elsheikh, 2012) an algorith-
mically differentiated library capable of modeling the dy-
namics of biochemical reaction networks together with
DPS, the major connection mechanism:

connector ChemicalPort
"reaction connector"
Units.Concentration c "concentration";
flow Units.VolumetricReactionRate r
"reaction rate";
end ChemicalPort;

is extended within another separate package Derivatives
as follows:

connector ChemicalPort
extends Interfaces.ChemicalPort;
outer parameter Integer NG
"dimension of the gradients";
Real g_c[NG] "gradients of c";
flow Real g_r[NG] "gradients of r";
end ChemicalPort;

The parameter NG specifies the number of active param-
eters that is first to be specified at a top-level model. The
array g_c (g_r) is a derivative object describing the deriva-
tives of the concentration (the reaction rate) w.r.t. active
parameters. Similarly a component providing basic inter-
faces for arbitrary chemical substances:

partial model BasicNode
"Basic declarations of any Metabolite"

extends
Interfaces.dynamic.NodeConnections;
parameter Units.Concentration c_0 = 0

"initial concentration";
Units.Concentration c(start = c_0)
"substance concentration";
Units.VolumetricReactionRate r_net
"net reaction rate";

equation
r_net = rc.r;
rc.c = cj;
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mc.c = c;
end BasicNode;

is extended as follows:

partial model BasicNode
"Basic declarations of any Metabolite"
extends Derivatives.Interfaces.
dynamic.NodeConnections;
extends NodeElements.dynamic.BasicNode;
outer parameter Integer NG
"# of gradients";
parameter Real g_c_O0[NG] = zeros (NG)
"gradients of c_0";
Real g_c[NG] (start = g_c_0)
"gradients of c";
Real g_r_net [NG] (start = zeros (NG))
"gradients of r_net";

equation
g_r netl[:] = rc.g_r[:];
rc.g_cl:] = g_cl:]1;
mc.g_cl:] = g_cl:];

end BasicNode;

The extended equations are obtained by differentiating the
original equations w.r.t. arbitrary parameters. Note that
the differentiated component is now extending the differ-
entiated model of NodeConnections. To each variable and
parameter, a corresponding derivative object is associated,
e.g. g_c_0. In this way, derivatives w.r.t. start values can
be also represented. Obtaining derivative formulas as well
as the naming conventions of intermediate variables are
comprehensively explained in (Elsheikh, 2015). The algo-
rithm is also employed to manually derive partial deriva-
tives of complex formulas.

4.2 A Top-level Model
A top-level model is slightly modified from:

model Spirallusdyn "An abstraction TCA
cycle"
import NodeElements.dynamic.x;
import Reactions.convenience.dynamic.*;

Node A;
RevKinetic vl
(NS = 1, NP = 1,
Viwdmax = 3.0,
2)

Vbwdmax = 1.0,
equation

connect (A.rc, vl.rc_S[1]);
connect (vl.rc_PJ[1], B.rc);

end Spirallusdyn;

o

©

to:

model spirallusdynAll "Parameter
sensitivities™"
import Derivatives.NodeElements.dynamic.*;
import Derivatives.Reactions.
convenience.dynamic. *;
import Derivatives.Functions.x;
// instead of

// import NodeElements.dynamic. *;

/S

// additional declaration

inner parameter Integer NG = 24;
// the exisiting components
Node A;
RevKinetic vl
(NS = 1, NP = 1,
Vifwdmax = 3.0,
// declare the 4-th active
parameter
g_Vfwdmax = unitVector (4, NG),
Vbwdmax = 1.0,
// declare the 5-th active
parameter
g_Vbwdmax = unitVector (5, NG),
)i
equation

// connection equations remain the same

connect (A.rc, vl.rc_S[1]);
connect (vl.rc_P[1l], B.rc);

end spirallusdynAll;

in order to additionally simulate DPS, cf. (Elsheikh, 2012)
Section 5 for simulation results. Imported differentiated
types are employed and input Jacobian is additionally de-
clared. Methodological details on the equation-based AD
method are demonstrated in (Elsheikh, 2014) illustrated
on a simple part of the MSL, the ADMSL library. Regard-
less of being platform-independent uniform approach, the
main advantage of this method is that DPS are already a
part of the model, profitable to many applications high-
lighted in (Elsheikh and Kucherenko, 2019).

S Whispering about der(x,p)

5.1 der(x,p)!?

The established methodology for equation-based AD of
Modelica models / libraries inherits an implicit but intu-
itive proposal: der(x,p). This allows the operator der to
take a second argument as a parameter to represent DPS.
The equation-based AD approach can be viewed as an
equivalent prototype implementation of such an enhance-
ment. More or less, der(x,p) may provide all equivalent
activities a modeler currently needs to explicitly imple-
ment DPS at model level. For instance, a demonstration
may look as follows:

model MyModel
MyCompl C1;
MyComp2 C2;
Real dxdp;
Real dydp;
Real dydg;

equation
dxdp = der(Cl.x,C2.p);
dydp = der(C2.y,C2.p);
dydg = der(C2.y,Cl.q);

end MyModel;
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The above model is equivalently realizable by equation-
based AD at the model level.

5.2  What speaks for der(x,p)?

The demonstrated efforts for computing DPS of Modelica
models reveal that they unintentionally converge to pro-
vide DPS-capabilities at the language level:

1. If a Modelica simulation environment will eventu-
ally support (or are already supporting) DPS for FMI,
then it makes sense also to consider DPS at Modelica
level due to potentially duplicated efforts

2. Why should a Modelica modeler need to externally
employ FMI with additional overhead for reasons
FMI have not been apparently established for?

3. Representing DPS at model level is intuitive and re-
alizable for significant subset of Modelica models,
cf. Section 6

4. Regardless of a significant set of applications of DPS
where its advantageous to have DPS at the model
level (Elsheikh and Kucherenko, 2019), DPS can be
physically part of the model (Fell, 1992)

The last argument is referring to the s.c. control coeffi-
cients corresponding to scaled DPS allowing comparative
studies among parameters generally applicable to arbitrary
physical domains.

5.3 What speaks against der(x,p)?

While the demonstrated algorithmically differentiated li-
braries correspond to continuous-time physical models,
probably most of Modelica applications cover discrete
phenomena. It should be clear how to treat der(x,p) if x is
not continuous. Formally speaking: assume that the given
Modelica model corresponds to an explicit hybrid ODE:

(7

= f(x,z,m,q,t)=0 , xo(p,to) =x0(p)

where x, p and ¢ as given in Equation (1) and

e m(q,t) € R" set of discrete variables with constant
values between events

® z(g,t) € R™ set of event indicators where z;(t;)
changes sign implies that for a small € > 0:

my(tj — €) # my(tj + €),

lim x,(t;) # lim x(t;) or
=t 1=t
lim x,(tj) # lim xr<[j)

=) 1=t
for some k € {1,2,...,n,},s€{l,...,n,}and r €

{1,...,nx}

Similarly, assume that p are the active parameters. Some
justifiable questions, among others, on the validity of this
study on hybrid systems would include:

1. When does a unique solution for the trajectories of
sensitivities exist?

2. How to handle sensitivities when x jumps between
events?

3. What if a parameter p; is the time of event, i.e.
dpi/dtj =1 with some z;(¢;) =0

4. Generally, what if z is a function of parameters, i.e.
z=z(p1)?

5. How to handle the case where a parameter may even
influence the presence of an event?

6. How to treat the influence of parameter values on
event indicators z or even discrete variables m?

Definitely some of the above questions need to be ade-
quately addressed. On the other hand, there are plenty of
studies on SA of hybrid systems in literature e.g. (Galdn
et al., 1999; Barton and Lee, 2002; Saccon et al., 2014)
some of which could be inspiring for addressing these
questions.

6 Evaluation, Compilation and Simu-
lation of Sensitivity Systems

Two AD approaches for generating a sensitivity system
out of der(x,p) specification can be imagined. The clas-
sical one is to generate the required derivatives needed
by specialized solvers for DPS, possibly using classical
AD tools as demonstrated in Section 3.2. Another naive
but attractive alternative is to self generate the sensitivity
system using symbolic differentiation capabilities, if not
equation-based AD. Afterwards the generated sensitivity
system is subject to the standard optimization techniques
of Modelica compilers (Murota, 1987; Cellier, 1991). In
many cases, compilation complexity does not need to be
overwhelmed due to the dimension of sensitivity system,
as revealed in Section 6.2.

6.1 Equation-based AD

In the following, an advanced equation-based AD ap-
proach following a forward-differentiation scheme is
demonstrated which

1. evaluates a sensitivity system in one single shot
2. overcomes the repetitive computations drawback

3. requires no additional memory for derivative objects
of intermediate computations

This is the same approach that has been applied to
compute partial derivatives of library components demon-
strated in Section 4. Technically speaking w.r.t. the
above mentioned first argument and partially the second
argument, symbolic differentiation results in similar
conclusions. The same applies to classical AD if the seed
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vector s from Eq. (5) becomes a seed matrix and assigned
to the identity matrix [, for computing the Jacobian.
However both methods were not satisfiable for computing
partial derivatives at Modelica language level (Elsheikh
et al., 2008).

On the other hand, equation-based AD combines the ad-
vantages of both approaches by employing algorithmic
capabilities borrowed from equation-based compilation
techniques for simplifying common sub-expressions. In
(Elsheikh, 2015) it is shown that equation-based AD does
not associate derivative objects for intermediate compu-
tation resulting in efficient memory management of large
equation systems of complex formulas. The proposed ap-
proach directly derives the sensitivity system by comput-
ing the rhs of Eq. (4) in one single shot as follows:

SeS1+fpS2 €))

dp

e R
ow

ox € R4

S
oy y W2 =

where S| =

S1 & S, are seed matrices (vectors if ¢ = 1) that are set
using the auxiliary vectors v,w € R? in the following way:

1. only f; required: let v=x¢€ R™ , w=¢, € R"
where ¢, is a dummy vector with which dx/d¢, =
0 € R%*" and dp/d ¢, =0¢& R"»* "™

2. only F), required: letw=p € R" ,u=v= ¢, € R"

3. sensitivity subsystem required: setv =w = p € R"»

Despite the large size of sensitivity systems, they
can be compactly represented. Assuming that
X = (x17x27"'7xnx)T’ p = (p17p27"'7pnp)T and

f: (fl,fZ;“;fnx)T Wlth

ﬁ :Rnx+np+1 SR

st. fi=fil,p,t)=el - f(x,p,1), i€ {1,2,...,n.}

corresponds to the i-th equation in f, the corresponding
differentiated equation w.r.t. a parameter p; is derived
from Equation (8) as follows:

8xl L

8fl &xk
ap, Z’ 8p ;

-~ Ofi Ipk
k= 1apk ap;

(€))

By assigning a gradient object (i.e. array) to each partial
derivative, the sensitivity subsystem is compactly formu-
lated with n, equations as:

8xl Z 8f, 8xk 8f,
op * Jx; Ip 8

(10)

6.2 Compilation of Sensitivity Systems

When computing the sensitivity system of a Modelica
model, an approach is to generate the sensitivity equation
after optimizing the flat representation of the model. How-
ever the other way around might not be significantly less
efficient. Naive generation of the sensitivity system of a
flat equation system is also subject to optimization tech-
niques of Modelica code. For instance, the differentia-
tion of simple equations from connections leads to simple
equations subject to removal at the optimized equation set.
Another significant remark is demonstrated in Figure 3,
the computational graph of an equation system describing
the motion of a free pendulum in the Cartesian space (cf.
(Fritzson, 2011)). The computational graph of the whole

Figure 3. Pendulum equation system

sensitivity system is shown in Figure 4.

Figure 4. Computational graphs of pendulum equation sensitiv-
ity system

Obviously both computational graphs of the equation sys-
tem and its sensitivity subsystems are isomorphic. This
argument is generally valid as one of the mathematical
foundlings proven in (Elsheikh and Wiechert, 2018). Con-
sequently one can utilize already existing compiler ca-
pabilities (Mattsson, 1995; Maffezzoni et al., 1996), in-
cluding index reduction (Pantelides, 1988; Mattsson and
Soderlind, 1993), to transform the sensitivity system into
a solvable optimized format. In many cases, there is no
need to apply Modelica compiler techniques to the sen-
sitivity subsystems. For example, the structural index
(Leitold and Hangos, 2001) of both systems are identi-
cal. The equations within a sensitivity subsystem selected
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for differentiation towards index reductions are those cor-
responding to the equations within the original system se-
lected for differentiation towards index reduction.

6.3 Simulation of Sensitivity Systems

Similarly, numerical integration of sensitivity equations
with standard solvers can be slow for high-dimensional
systems. By exploiting the structure of sensitivity
systems, speed up can be achieved by exploiting the
Modelica-friendly method described in (Dickinson and
Gelinas, 1976). The original ODE / DAE system is nu-
merically integrated together with a sensitivity subsystem
corresponding to only one single active parameter. This
computation is repeated for each active parameter. A gen-
eralization of this approach is to allow larger sensitivity
subsystems corresponding to several active parameters.
Hardware-oriented heuristics can be employed for select-
ing the optimal number of active parameters. Moreover,
this approach is salable w.r.t. to parallelization (Elsheikh,
2015).

7 Summary and Outlook

This work summarizes some conducted efforts in the
Modelica community to provide a functionality for com-
puting DPS. In particular, equation-based AD allowing
DPS to be present at the model level is highlighted. The
study hints that these efforts may potentially converge
to the integration of DPS facilities for Modelica. One
possibility is to allow the operator der to have a second
argument as a model parameter. From one side, this
provides a uniform platform-independent solution for
representing DPS. From the other side, many applications
based on DPS are realizable. In order to promote the
presence of DPS at Modelica level, a new Modelica
library called PSTools is currently under development
from which the example in Figure 1 is taken.

Representation of DPS at model level has been demon-
strated in few application domains that are rather describ-
ing systems governed by continuous-time equation sys-
tems. While excessive triggering of events are not that
common in the field of Systems Biology in comparison
for instance with the field of Power Electronics, an ab-
solute justification of der(x,p) demands a proper treat-
ment of DPS in the presence of discontinuities and events.
The mathematical foundation for DPS of hybrid systems
have been extensively studied in literature which could be
mapped to a proper Modelica-based treatment.
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