
Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 743
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

Flow Network based Diagnostics for Incorrect Synchronous Models
Olsson, Hans

743

Flow Network based Diagnostics for Incorrect Synchronous Models

Hans Olsson1

Dassault Systemes, Sweden, hans.olsson@3ds.com

Abstract
This paper will present a novel way to give diagnostics

for incorrect synchronous models.

The goal is that this will ease the introduction of

synchronous models, since unclear diagnostics often

create a barrier for new users. In particular the case of

separating the clocked and continuous parts will be

considered, and shown to be equivalent to finding a

“leak-flow” in a certain flow network, which can be

solved using max-flow/min-cut techniques.

The result is efficient, easy-to-adapt, and gives

diagnostics focused on correcting the issue.

We have not seen this idea used before in this context,

even if in retrospect it seems natural and

straightforward.

The methods have been implemented in Dymola

2019 (released in June 2018) and also in 3D Experience

Platform 2019x.

Keywords: synchronous, graph theory, flow networks,

minimal cut, error diagnostics

1 Introduction

Diagnostics for incorrect Modelica models is an

important part of Modelica tools. Tools can implement

advanced diagnostics, either by additional analysis

based on the current Modelica language (Bonus and

Fritzson, 2002), or in combination with adding

restrictions to Modelica such as balanced models

(Olsson et al; 2008).

After a short discussion about different forms of

diagnostics for errors, we will start by introducing the

synchronous part of Modelica 3.3, and then flow

networks and the max-flow/min-cut theorem.

When presenting error diagnostics, important aspects

include how early the diagnostics is given, and how

localized the error is. The ideal situation is early

detection and that at least one plausible correction is

clearly located.

In particular, some diagnostics can be given as soon

as the error is made, and tools can in those cases prevent

the error from being introduced in the model, e.g.,

attempting to connect an electrical pin to a mechanical

flange.

Other diagnostics can only be given when translating
the complete model, e.g., missing a source signal in an

expandable connector set.

An intermediate variant is those where we can give

diagnostics for incomplete models without introducing

false positives – i.e., we avoid diagnostics for issues that

will naturally be corrected as part of completing the

model; but it is still a global property.

The clock partitioning problem is one of these

intermediate variants, which adds the restriction that the

diagnostics should work on such incomplete models –

in particular when equations are missing.

That also implies that we could present the

diagnostics after each operation, but that is currently not

implemented. The errors are not necessarily local – but

it may still be that they could be corrected in one or a

few places.

2 Synchronous Modelica

Modelica 3.3 added synchronous primitives (Elmqvist

et al, 2012) intended to make it easier to model control

systems that run on a sampled clock and connect to the

continuous plant model. This section will only describe

the concepts needed in this paper and is not a general

introduction to synchronous modeling.

To illustrate we have a simplified model illustrating

some of the concepts:

model FirstOne
 Real x,y,z;
equation
 when Clock(1) then
 2*x=sample(y);
 end when;
 when Clock() then
 z=x+1;
 end when;
 y=hold(z)+time;
end FirstOne;

The equation 2*x=sample(y); is a clocked

equation and only active when the corresponding clock

ticks (every second as given by Clock(1)). Note that it

is an actual equation – but only active when the clock

ticks, in contrast to non-clocked when-clauses in

Modelica which only allow a restricted form of

equations where the left-hand side must be a variable.

One important aspect of the synchronous extension is

that variables and equations are not declared to be

continuous or clocked (in the example x and z are

clocked and y is continuous), instead the clock-partition

can be inferred using “clock inferencing”.

Flow Network based Diagnostics for Incorrect Synchronous Models

744 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

Additionally, sub-models can be used in both the

continuous and clocked domains; be restricted to one

domain or the other, or connect the two domains in

certain ways. That the same sub-model can be used in

both domains imply that we cannot infer properties of

the used models in general – but only infer properties for

each specific component of those sub-models.

Specifically equations in when Clock must be

clocked, and sample takes a continuous time input and

returns a clocked value; and hold converts in the other

way. It is not possible to directly use a clocked variable

when it is not active, instead one must explicitly use

hold(z) to get the last active value for z. Additionally

time is always continuous time.

If the modeler makes mistakes, the clock inferencing

may fail. A trivial example would be writing y=z+time;

in the model above, since time must be continuous and

z is given by a clocked equation. The algorithm in this

paper gives diagnostics and recommended solution for

such errors (mixing clocked and continuous) – and the

algorithm is particularly suited for larger models where

there are a large number of (potentially incorrect)

intermediate steps in the inferencing.

In this example the clock for z is not specified, but

automatically inferred to be the same as for x. The

Clock(1) could also be duplicated, and it is then

verified that the two clocks tick at the same time –

ensuring that different clocks are not used accidentally.

The example could also be written as:

model SimplerFirst
 Real x,y,z;
equation
 2*x=sample(y, Clock(1));
 z=x+1;
 y=hold(z)+time;
end SimplerFirst;

In this case we automatically infer that x and z are

clocked, and y continuous time. The equation z=x+1;

can on its own be either clocked or continuous time (and

could in general be in a sub-model that works in both

parts).

An advanced feature is that clocked equations may

include differential equations provided a discretization

method is specified for the clocked partition, e.g.:

model Discretized
 Real x,y,z;
equation
 2*x=sample(y, Clock(Clock(1),

 solverMethod="ExplicitEuler"));
 der(z)=x+1-z;
 y=hold(z);
end Discretized;

The solverMethod argument ensures that any

differential equation in the partition (in this case

der(z)=x+1-z;) will cause the corresponding variable,

z, to be updated using one step of explicit Euler when

the clock ticks. The der-operator cannot occur in

clocked partitions without a deduced solverMethod

(there are additional details regarding different

partitions that are not relevant for the analysis in this

paper).

A final important aspect is that Modelica supports

graphically connecting components – continuous,

clocked, and even components mixing the two domains.

There are also libraries of models, including

Modelica_Synchronous that contain tested standard

models.

3 Flow networks

A flow network (Ford and Fulkerson, 1956; or any

general overview such as Cormen et al, 1993); is a

directed graph where each edge has an arbitrary

nonnegative capacity. When modifying the graph the

capacities can become zero, and in that case we view it

is as if the edge is not present.

A flow in such a network satisfies a number of

constraints, in particular the flow in each edge does not

exceed its capacity and except for source and sink

vertices the in-flow to a vertex matches the out-flow

from that vertex. In Figure 1 a small flow network with

flows is shown, the source is marked with “s” and the

sink with “t” (for target) and each edge has two

numbers, the first is the current flow and the second is

the capacity. The edges where the current flow equals

the capacity are saturated.

Figure 1 A small flow network.

Without loss of generality we can assume that there

is only one source and one sink (Ford and Fulkerson,

1956). If there are e.g., multiple sources it is known that

we can introduce a “super-source” with edges of infinite

capacity going to each source, and treating those

original sources as normal vertices; unless there are

additional restrictions on the flows.

3.1 Minimal cut theorem

A disconnecting set of edges partitions the vertices into
two sets – one containing the source and another the

s

o

 3
/3

t

t

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 745
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

sink. A disconnecting set without redundant elements is

a cut.

The max-flow min-cut theorem, also known as

“minimal cut theorem” (Ford and Fulkerson, 1956);

states that the maximal flow obtainable in a network is

the minimum of the sum of capacities of the edges in the

set taken over all disconnecting sets. (Note: even if it is

the minimum for all disconnecting sets the minimum is

clearly for a disconnecting set without redundant

elements, i.e., for a cut.)

If we revisit the previous small flow network we see

that the maximum flow is 10, and the minimal cut is

shown in red in Figure 2; and the other edges as dotted.

Figure 2 Minimal cut

Note that the minimal cut is not necessarily unique –

another option would be to replace the 6/6 edge with the

other 6/6 edge, and a third option would be the two

edges going into “t”. The two edges going from the

source are clearly a cut, but its total capacity is 11 and it

is therefore not a minimal cut. The red 6/6 edge and the

4/4 have a sum of capacities of 10, but is not a

disconnecting set and thus not a cut. The red edges in

union with the 4/4 edge form a disconnecting set that is

neither a cut nor minimal.

There exists a number of algorithms for constructing

the minimal cut and the maximum flow, with different

running time in terms of number of edges and vertices;

(Cormen et al, 1993).

3.2 Augmentation path

If a flow network allows a flow between the source

and the sink we can find a path – called chain of edges

in (Ford and Fulkerson, 1956) connecting them. The

maximum flow through that path is the minimum

capacity of any of the edges in the path.

After “subtracting” this flow from the graph one can

attempt to find an additional path (called “augmentation

path”) connecting the source and the sink, and repeating

this leads to the algorithm called Ford-Fulkerson based

on (Ford and Fulkerson, 1956).

Subtracting the flow means both reducing the

capacities of the used edges, and adding a capacity in the

reverse direction; the latter is needed since we will

sometimes later reduce the flow through specific

vertices.

The path will later be used for error diagnostics, and

thus redundant edges will cause a problem in at least two

cases:

If the graph has cycles a vertex could appear multiple

times in the path, but that can only decrease the flow

through the path and the algorithm thus avoids revisiting

vertices.

Additionally, if there are multiple sources a path

could start at one source and then have an edge leading

to a different source (and similarly for sinks). By

treating all sources as visited at the start and avoiding

revisiting vertices that is avoided for the sources, and by

stopping at the first sink reached it is avoided for sinks.

The current implementation does not use a breadth-

first search for the path, but that would naturally avoid

the previous issues.

A major restriction of the algorithm is that this only

converges in a finite number of steps if the capacities are

integers (or in general rational numbers); and has a

running time of O(number of edges*maximum flow).

This follows from the fact that we can find one

augmentation path in running time proportional to the

number of edges, and each augmentation path has a flow

of at least one.

We currently do not use any specific heuristic for

finding the augmentation path, but a breadth-first search

is generally a good heuristic avoiding specific problems

for large maximum flow (Cormen et al, 1993).

Assuming the maximum flow is small this simple

algorithm compares favorably to recent algorithms; that

instead are superior if the maximum flow is large or the

capacities are real numbers; as their running time only

depend on the number of edges and vertices.

4 Min-cut and Clock partition

We will now combine the clock partition and the flow

network.

4.1 Flow networks for synchronous models

Based on a model with synchronous parts we can

construct a flow network where the variables and

equations that must be continuous are sources, and

variables and equations that must be clocked are sinks.

Both equations and variables are vertices in this

graph, and edges connect equations to variables

appearing in the equation – unless the variables appear

inside certain primitives, in this paper we will only

discuss sample and hold, but in general it also includes

“Clock with Boolean condition”. The variables inside

these primitives are instead sources or sinks. The edges

are also added in the opposite direction (with the same

capacity in both directions) so that we get a symmetric

directed graph. Alternatively, we can replace this pair of

edges with one bidirectional edge with capacities in both

directions – initially equal.

s

o

 3
/3

t

t

Flow Network based Diagnostics for Incorrect Synchronous Models

746 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

Having edges in both directions implies that there are

cycles in the graph, but the chosen algorithm can handle

that.

The capacities for all edges can be selected as positive

integers; the exact values will be discussed later.

Figure 3 Flow network for the model “Discretized”

In Figure 3 we see the flow network corresponding to

the previous model “Discretized” illustrating most of the

concepts, where continuous equations and variables

(argument of sample) are marked in yellow (and

dashed outline) and clocked equations and variables

(argument of hold) are marked in green. The der(z)-

variable is special and marked in lighter yellow (and

dotted outline), indicating that without a solverMethod

it must be in a continuous partition (which would cause

a leak-flow between the partitions). There is also an

edge from der(z) to z indicating that they should be in

the same partition (in later graphs derivative-variables

will not be separate nodes). Since there is a

solverMethod attached to the clock-partition, der(z) is

just a normal variable and there is no leak-flow.

Figure 4 Incorrect assignClock

In Figure 4 we have an incorrect model from MCP-

0030 (Frenkel, 2018). The corresponding flow network

is shown in Figure 5, where the continuous part (due to

time) is marked in yellow and the clocked part (due to

when Clock()) in green, and the edges that are not part

of the augmentation path are dotted. The arrows on the

edges indicate the direction of the flow.

The saturated edges (i.e., potential minimal cuts) are

shown in red and wider. It is common that the saturated

edges occur in pairs and the implementation handles

that, but we will in the future investigate alternative

formulations that avoid this.

Figure 5 Synchronous simple flow network

The graph is bipartite with equations and variables

forming the two parts as is normal in Modelica, but since

both sources and sinks can appear in both parts this fact

does not seem useful for analyzing this flow network.

This implies that the edges in the cut can go both from

equation to variable and vice-versa.

Note that the problem of assigning variables to

equations in Modelica is equivalent to solving a

maximum-flow problem on such a bipartite graph.

4.2 The significance of the flow

A correct model can be partitioned into zero or more

clocked parts, and zero or more continuous parts. This

corresponds to separating the graph into separate parts,

and thus a zero flow.

If the flow is positive it indicates that graph cannot be

partitioned in this way and the flow gives “leakage”

between continuous and clocked parts. If there are

multiple disjoint errors there will be multiple “leakages”

increasing the flow; i.e., a higher flow can be seen as an

indication of a more incorrect model.

The cut indicates which variables to remove from the

equations to restore the partition. Replacing the

variables by sample() or hold() variants of the same

variables removes the edge, without excessively altering

the model structure.

Similarly, the corresponding path(s) between source

and sink is important, since that allows the user to see

that there is an unwanted path between the clocked and

continuous parts.

4.3 The capacities of edges

The previous method would work for any set of positive

integers as edge-capacities, and give some cut between

clocked and continuous parts.

Good diagnostics for errors can thus be seen as

finding a suitable heuristic for the capacities. The basic

idea is that we give high capacity to edges that we do

not want in the cut-set; or roughly that high capacity

corresponds to high trust in that equation.

As a first attempt, we chose capacity 1 for edges

corresponding to connection-equations, and 10 for other

edges. In the future, we are considering having higher

weights for equations from tested libraries.

assignClock1

periodicClock1

1 s s

clock

startTime=0

x

z

y

2*x=sample(y, …)

der(z)=x+1-z;

y=hold(z)

der(z)

clock.y

assign.u

assign.y

clock.y=f(time)

connect(clock.y, assign.u)

when Clock() then

 assign.y=assign.u;

end when;

1/10

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 747
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

4.4 Algorithm

The following presents pseudo-code outlining the

algorithm. Note that similarly as (Ford and Fulkerson,

1956) it is not a completely specified algorithm as there

are multiple ways of finding the augmentation path.

Additionally, the source-cut part can use any

algorithm that finds reachable nodes in a graph.

Sources={time}

Targets={}

Edges={}

// Build graph based on equations:

for eq in Equations loop

 // Low capacity for likely errors

 cap=if eq is connection then 1 else 10;

 for var in Incidence(eq) loop

 if var inside sample then

 Sources+={var};

 eq.isClocked=true;

 elseif var inside hold then

 Targets+={var};

 eq.isNonClocked=true;

 else

 // Edge(from->to, cap)

 Edges+={Edge(eq->var, cap)};

 Edges+={Edge(var->eq, cap)};

 end if;

 end for;

 if eq.isClocked then

 Targets+={eq};

 end if;

 if eq.isNonClocked then

 Sources+={eq};

 end if;

end for;

// Ford-Fulkerson finding max-flow:

maxFlow=0;

loop // Find path of edges having cap>0

 augmentPath=FindPath(Sources, Targets);

 if augmentPath=={} then

 break;

 end if;

 // Possible flow for path

 flow=min(e.cap for e in augmentPath);

 maxFlow+=flow;

 // Subtract augmentPath flow:

 for e in augmentPath loop

 e.cap-=flow;

 reverse(e).capacity+=flow;

 end for;

end loop;

// Find source-cut, i.e. the cut

// closest to the source

// We first find all vertices

// reachable from the sources

SourceConnected={};

AddTo=Sources;

while not AddTo.empty() loop

 vertex=AddTo.front();AddTo.pop_front();

 if not vertex in SourceConnected then

 for e in Edges.from(v) loop

 if e.cap>0 then

 AddTo.push_back(e.target);

 end if;

 end for;

 end if;

end while;

// Find all edges with 0 capacity

// that leaves this set

SourceCut={};

for v in SourceConnected loop

 for e in Edges.from(v) loop

 if e.cap==0 and

 not (e.to in SourceConnected) then

 SourceCut+={e};

 end if;

 end for;

end for;

// And similarly for the target-cut

5 Examples

MCP-0030 (Frenkel, 2018) was made to solve the same

problem as this paper. It contains one example of a bad

model – shown in Figure 4. The rationale for the MCP

was that earlier diagnostics just listed all equations and

variables that failed for clock inference and it was not

helpful for users. Note that the ideas presented here were

implemented before the MCP.

With the approach in this paper, this example gives

the diagnostics:

Continuous time parts and discrete parts don't

decompose.

 It is necessary to introduce sample or hold elements

replacing:

connect(clock.y, assignClock1.u);

The following sequence indicates that the involved

variables and equations are continuous time:

clock.y :

 clock.y = clock.offset+(if time < clock.startTime then

0 else time- clock.startTime);

However, this is in contradiction with

assignClock1.u:

 when assignClock1.clock then

Flow Network based Diagnostics for Incorrect Synchronous Models

748 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

 assignClock1.y = assignClock1.u;

end when;

The two sequences of equations and variables are

constructed from the augmentation paths, cut according

to the minimal cut.

It could be even clearer by showing that clock.y is

continuous due to using time, and in this case the

connection between clock.y and assignClock1.y was the

obvious culprit.

We will now consider variations of an example from

Modelica_Synchronous shown in Figure 6.

Figure 6 Textbook controller

If we had forgotten one of the synchronous primitives

(there are two sample-blocks and one hold-block) the

goal would be that diagnostics would recommend

adding it.

The possible errors will be listed starting from the one

ones that are simplest to investigate, and then proceed to

the more complicated ones.

Without sample2 the diagnostics will pinpoint that:

It is necessary to introduce sample or hold elements

replacing:

connect(ramp.y, feedback.u1);

If sample2 were replaced by a gain-block the

diagnostics would be:

Continuous time parts and discrete parts don't

decompose.

 It is necessary to introduce sample or hold elements

replacing:

 connect(ramp.y, gain.u);

or:

 connect(gain.y, feedback.u1);

or some variation of this.

The two proposed corrections are two different min-

cuts (one close to source, one to sink). In general there

could be a large number of possible min-cuts, and listing

them all could be time-consuming and unlikely to help

users.

If both sample1 and sample2 are missing, the

diagnostics state:

It is necessary to introduce sample or hold elements

replacing:

connect(feedback.y, PI.u);

This shows an interesting change, since the proposed

change moves the feedback-component from the
clocked part to the continuous part.

If only sample1 was removed the method described

so far would see two possibilities:

connect(torque.tau, hold1.y);

connect(speed.w, feedback.u2);

The first suggestion has two problems: firstly, it

would make more sense to remove the hold-block than

introduce a sample-block, but secondly and more

importantly, that model would not translate, since the

der-operator is used in a clocked partition without

solverMethod.

That is handled by running the algorithm on a slightly

different flow network, which is constructed by

considering the der-operator part of the continuous

partition. That results in:

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(speed.w, feedback.u2);

Without hold1 we get:

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(torque.tau, PI.y);

Indicating that the correction is instead to introduce

hold1.

If both sample1 and hold1 are missing the model is

valid for check, but translation would give (flow

network in Figure 7):

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(speed.w, feedback.u2); connect(torque.tau,

PI.y);

The following sequence indicates that the involved

variables and equations are continuous time:

 speed.w : speed.w = der(speed.flange.phi);

 torque.tau : torque.flange.tau = -torque.tau;

 torque.flange.tau :

load.flange_a.tau+torque.flange.tau = 0.0;

 load.flange_a.tau : load.J*load.a =

load.flange_a.tau+load.flange_b.tau;

 load.a : load.a = der(load.w);

However, this is in contradiction with

 feedback.u2 : feedback.y = feedback.u1-

feedback.u2;

 feedback.u1 : sample2.y = feedback.u1;

 sample2.y : sample2.y = sample(sample2.u,

sample2.clock);
 feedback.y : feedback.y = PI.u;

 PI.u : when Clock_0 then

 PI.x = previous(PI.x)+PI.u/PI.Td;

feedback controller plant reference

load

J=10 kg m²

ramp

duration=2 s

-
feedback torque

tau

PI

PI

Td=1

sample2

0.0

hold1

sample1
periodicClock

0.1 s s

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 749
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

 PI.y = PI.kd*(PI.x+PI.u);

 end when;

The sub clock, BaseClock_0.SubClock_1, includes

derivatives, but no solver method is specified.

The last line indicates that one way of correcting the

model is to specify a solverMethod for the partition. In

that case the plant-part will be discretized as part of the

clocked partition.

However, the first part of the error message indicates

that another solution is to introduce sample and hold.

This error message lists two connect-statements, and the

users has to replace both of them.

The part “The following sequence…” would as

default be collapsed since it is quite long and only shows

what is already stated. However, even if lengthy it still

only lists relevant variables and equations, e.g.

load.flange_a.phi and load_flange_b.phi are also part of

the continuous-time partition – but they are not part of

any augmentation path used and thus not included.

6 Implications for models

The examples demonstrate that no changes are needed

to support these diagnostics. However, changes in

models and/or the language can still be helpful to

improve the diagnostics further.

In particular, models representing external controllers

can currently be written as

model Controller

 extends SI2SO;

equation

 y=do_step(u1, u2);

end Controller;

Here do_step is an external C function (possibly part

of an FMU), and each do_step updates the internal state

and thus it should be run at every sampling point of the

inferred clock.

That works in correct models where it is assigned to

the clocked part and run at every sampling point.

However, if the controller is incorrectly connected that

can end up in the continuous part; which is not intended.

Modelica 3.4 (Olsson (editor), 2017) has restrictions

for impure functions, but if do_step is not declared as

impure that will not generate diagnostics. For the future

we might consider treating impure function as sinks in

the graph.

One possibility is to change the model to:

model Controller

 extends SI2SO;

equation

 when Clock() then

 y=do_step(u1, u2);

 end when;

end Controller;

That variant works and ensures that it is part of a

clocked partition, providing better diagnostics – but it

looks slightly distracting. A future possibility could be

to introduce a form of “Clocked model” where all

equations are seen as clocked.

7 Future work

For the future there are multiple lines of potential work

– one is improving the current work by improving the

diagnostics, another is using this for unrelated problems.

7.1 Other uses of min-cut

An obvious question is whether the same concept can be

applied to other problems.

The characteristics leading to min-cut being a good

fit for this problem are:

 Vertices can be partitioned into two parts where

certain vertices (the sources and sinks) must be

in certain partitions.

 Corrections correspond to removing edges.

If we consider the separation of variables into different

clocks (and similarly for sub-clocks) we see that they

sort of match the first, but not the second criteria:

 One Clock could be a selected as a source and

another Clock-variables as sink. This works if

there are two Clocks mixed together that should

not be mixed, but if there are three or more

Clocks mixed together this is not ideal (but at

least it produces some diagnostics).

 However, removing an edge is not the only

possible correction – another possibility is that

the Clocks should be the same.

Clock-partitioning diagnostics should thus both

include the possibility of separating the graphs, and also

changing the Clocks to be the same, i.e., we can view it

as two distinct cases (like for missing solverMethod or

missing sample and hold).

For sub-clocks, the possibility of merging the clocks

is even more complicated, since they can depend on

multiple sub-clock factors.

Unrelated to synchronous models we believe this

kind of diagnostic can be useful when breaking

dependencies using decouple to allow parallelization

– as described in (Elmqvist et al, 2014). It cannot

directly help with decouple failing to split the system

of equations into smaller part, but it can detect that the

two sides of decouple are connected in unexpected

ways, which has a tendency to occur.

7.2 Implementation

The algorithm was originally implemented Dymola

2019 (released in June 2018) and also in 3D Experience

Platform 2019x. The handling related to solverMethod

will be added in Dymola 2020, and all diagnostics are

from that version.

Acknowledgements

Flow Network based Diagnostics for Incorrect Synchronous Models

750 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

The incorrect models from various users were one

important aspect for starting this work; another

inspiration to start the work was an effort to understand

the existing algorithms for synchronous models

developed by Sven Erik Mattsson (Elmqvist et al, 2012).

The proposal for a new primitive in MCP-0030

(Frenkel, 2018) gave a major inspiration to describe the

approach.

Feedback from my colleagues and reviewers were

helpful in making this paper clearer.

References

Peter Bunus, and Peter Fritzson (2002): Methods for

Structural Analysis and Debugging of Modelica models.

Proceedings of the 2th International Modelica Conference.

157-165.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.

Rivest (1993): Introduction to Algorithms.

Hilding Elmqvist, Martin Otter, Sven Erik Mattsson (2012):

Fundamentals of Synchronous Control in Modelica.

Proceedings of the 9th International Modelica Conference.

15-26. doi: 10.3384/ecp1207615

Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson (2014):

Parallel Model Execution on Many Cores. Proceedings of

the 10th International Modelica Conference. 363-370. doi:

10.3384/ECP14096363.

L. R. Ford, Jr and D. R. Fulkerson (1956): Maximal Flow

Through a Network. Canadian Journal of Mathematics

8:399-404. doi:10.4153/CJM-1956-045-5.

Jens Frenkel (2018): Modelica Change Proposal MCP-0030

IsClocked Operator.

Hans Olsson, Martin Otter, Sven Erik Mattsson, Hilding

Elmqvist (2008): Balanced Models in Modelica 3.0 for

Increased Model Quality, Proceedings of 6th International

Modelica Conference, vol. 1:21-33.

Hans Olsson (editor) (2017): Modelica A Unified Object-

Oriented Language for Systems Modeling Language

Specification Version 3.4.

8 Appendix

Figure 7 Flow network for advanced example

ramp.y ramp.y=f(time)

sample2.u

sample2.y

connect(ramp.y, sample2.u)

sample2.y=sample(sample2.u)

feed.u1 connect(sample2.y, feed.u1)

feed.y=feed.u1-feed.u2 feed.u2

feed.y

PI.u

PI.x

PI.y

when Clock() then

 PI.x=previous(PI.x)+PI.u/Td;

 PI.y=kd*(PI.x+PI.u);

end when;

connect(feed.y, PI.u)

connect(PI.y, torque.tau)
torque.tau

torque.flange.tau=-torque.tau

torque.flange.tau

torque.flange.phi

load.flangea.tau

load.flange
b
.tau

load.flange
a
.phi

load.flange
b
.phi

load.w

load.a

speed.flange.tau

speed.flange.phi

speed.w

 torque.flange.tau

+load.flangea.tau=0

 torque.flange.phi

=load.flange
a
.phi

 load.J*load.a=

 load.flange
b
.tau

 +load.flange
a
.tau

 load.w=der(load.flange
b
.phi)

 load.a=der(load.w)

 load.flange
b
.phi

=load.flange
a
.phi

 load.flange
b
.tau

+speed.flange.tau=0

 load.flange

b
.phi=

 speed.flange.phi

 speed.w=

 der(speed.flange.phi)

connect(speed.w, feed.u2)

	Poster Session
	Flow Network based Diagnostics for Incorrect Synchronous Models

