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Abstract 
This paper will present a novel way to give diagnostics 

for incorrect synchronous models.  

The goal is that this will ease the introduction of 

synchronous models, since unclear diagnostics often 

create a barrier for new users. In particular the case of 

separating the clocked and continuous parts will be 

considered, and shown to be equivalent to finding a 

“leak-flow” in a certain flow network, which can be 

solved using max-flow/min-cut techniques.  

The result is efficient, easy-to-adapt, and gives 

diagnostics focused on correcting the issue. 

We have not seen this idea used before in this context, 

even if in retrospect it seems natural and 

straightforward. 

The methods have been implemented in Dymola 

2019 (released in June 2018) and also in 3D Experience 

Platform 2019x. 

Keywords:     synchronous, graph theory, flow networks, 

minimal cut, error diagnostics 

1 Introduction 

Diagnostics for incorrect Modelica models is an 

important part of Modelica tools. Tools can implement 

advanced diagnostics, either by additional analysis 

based on the current Modelica language (Bonus and 

Fritzson, 2002), or in combination with adding 

restrictions to Modelica such as balanced models 

(Olsson et al; 2008). 

After a short discussion about different forms of 

diagnostics for errors, we will start by introducing the 

synchronous part of Modelica 3.3, and then flow 

networks and the max-flow/min-cut theorem. 

When presenting error diagnostics, important aspects 

include how early the diagnostics is given, and how 

localized the error is. The ideal situation is early 

detection and that at least one plausible correction is 

clearly located. 

In particular, some diagnostics can be given as soon 

as the error is made, and tools can in those cases prevent 

the error from being introduced in the model, e.g., 

attempting to connect an electrical pin to a mechanical 

flange. 

Other diagnostics can only be given when translating 
the complete model, e.g., missing a source signal in an 

expandable connector set. 

An intermediate variant is those where we can give 

diagnostics for incomplete models without introducing 

false positives – i.e., we avoid diagnostics for issues that 

will naturally be corrected as part of completing the 

model; but it is still a global property. 

The clock partitioning problem is one of these 

intermediate variants, which adds the restriction that the 

diagnostics should work on such incomplete models – 

in particular when equations are missing.  

That also implies that we could present the 

diagnostics after each operation, but that is currently not 

implemented. The errors are not necessarily local – but 

it may still be that they could be corrected in one or a 

few places. 

2 Synchronous Modelica 

Modelica 3.3 added synchronous primitives (Elmqvist 

et al, 2012) intended to make it easier to model control 

systems that run on a sampled clock and connect to the 

continuous plant model. This section will only describe 

the concepts needed in this paper and is not a general 

introduction to synchronous modeling.  

To illustrate we have a simplified model illustrating 

some of the concepts: 

 
model FirstOne 
  Real x,y,z; 
equation  
  when Clock(1) then 
    2*x=sample(y); 
  end when; 
  when Clock() then 
    z=x+1; 
  end when; 
  y=hold(z)+time; 
end FirstOne; 

 

The equation 2*x=sample(y); is a clocked 

equation and only active when the corresponding clock 

ticks (every second as given by Clock(1)). Note that it 

is an actual equation – but only active when the clock 

ticks, in contrast to non-clocked when-clauses in 

Modelica which only allow a restricted form of 

equations where the left-hand side must be a variable.   

One important aspect of the synchronous extension is 

that variables and equations are not declared to be 

continuous or clocked (in the example x and z are 

clocked and y is continuous), instead the clock-partition 

can be inferred using “clock inferencing”.  
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Additionally, sub-models can be used in both the 

continuous and clocked domains; be restricted to one 

domain or the other, or connect the two domains in 

certain ways. That the same sub-model can be used in 

both domains imply that we cannot infer properties of 

the used models in general – but only infer properties for 

each specific component of those sub-models. 

Specifically equations in when Clock must be 

clocked, and sample takes a continuous time input and 

returns a clocked value; and hold converts in the other 

way. It is not possible to directly use a clocked variable 

when it is not active, instead one must explicitly use 

hold(z) to get the last active value for z. Additionally 

time is always continuous time. 

If the modeler makes mistakes, the clock inferencing 

may fail. A trivial example would be writing y=z+time; 

in the model above, since time must be continuous and 

z is given by a clocked equation. The algorithm in this 

paper gives diagnostics and recommended solution for 

such errors (mixing clocked and continuous) – and the 

algorithm is particularly suited for larger models where 

there are a large number of (potentially incorrect) 

intermediate steps in the inferencing. 

In this example the clock for z is not specified, but 

automatically inferred to be the same as for x. The 

Clock(1) could also be duplicated, and it is then 

verified that the two clocks tick at the same time – 

ensuring that different clocks are not used accidentally. 

The example could also be written as: 

 
model SimplerFirst 
  Real x,y,z; 
equation  
  2*x=sample(y, Clock(1)); 
  z=x+1; 
  y=hold(z)+time; 
end SimplerFirst; 

 

In this case we automatically infer that x and z are 

clocked, and y continuous time. The equation z=x+1; 

can on its own be either clocked or continuous time (and 

could in general be in a sub-model that works in both 

parts). 

An advanced feature is that clocked equations may 

include differential equations provided a discretization 

method is specified for the clocked partition, e.g.: 

 
model Discretized 
  Real x,y,z; 
equation  
  2*x=sample(y, Clock(Clock(1),     

        solverMethod="ExplicitEuler")); 
  der(z)=x+1-z; 
  y=hold(z); 
end Discretized; 

 

The solverMethod argument ensures that any 

differential equation in the partition (in this case 

der(z)=x+1-z;) will cause the corresponding variable, 

z, to be updated using one step of explicit Euler when 

the clock ticks. The der-operator cannot occur in 

clocked partitions without a deduced solverMethod 

(there are additional details regarding different 

partitions that are not relevant for the analysis in this 

paper). 

A final important aspect is that Modelica supports 

graphically connecting components – continuous, 

clocked, and even components mixing the two domains. 

There are also libraries of models, including 

Modelica_Synchronous that contain tested standard 

models. 

3 Flow networks 

A flow network (Ford and Fulkerson, 1956; or any 

general overview such as Cormen et al, 1993); is a 

directed graph where each edge has an arbitrary 

nonnegative capacity. When modifying the graph the 

capacities can become zero, and in that case we view it 

is as if the edge is not present. 

A flow in such a network satisfies a number of 

constraints, in particular the flow in each edge does not 

exceed its capacity and except for source and sink 

vertices the in-flow to a vertex matches the out-flow 

from that vertex. In Figure 1 a small flow network with 

flows is shown, the source is marked with “s” and the 

sink with “t” (for target) and each edge has two 

numbers, the first is the current flow and the second is 

the capacity. The edges where the current flow equals 

the capacity are saturated. 

 

               

 

Figure 1 A small flow network. 

Without loss of generality we can assume that there 

is only one source and one sink (Ford and Fulkerson, 

1956). If there are e.g., multiple sources it is known that 

we can introduce a “super-source” with edges of infinite 

capacity going to each source, and treating those 

original sources as normal vertices; unless there are 

additional restrictions on the flows. 

3.1 Minimal cut theorem 

A disconnecting set of edges partitions the vertices into 
two sets – one containing the source and another the 
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sink. A disconnecting set without redundant elements is 

a cut. 

The max-flow min-cut theorem, also known as 

“minimal cut theorem” (Ford and Fulkerson, 1956); 

states that the maximal flow obtainable in a network is 

the minimum of the sum of capacities of the edges in the 

set taken over all disconnecting sets. (Note: even if it is 

the minimum for all disconnecting sets the minimum is 

clearly for a disconnecting set without redundant 

elements, i.e., for a cut.) 

If we revisit the previous small flow network we see 

that the maximum flow is 10, and the minimal cut is 

shown in red in Figure 2; and the other edges as dotted. 

 

Figure 2 Minimal cut 

Note that the minimal cut is not necessarily unique – 

another option would be to replace the 6/6 edge with the 

other 6/6 edge, and a third option would be the two 

edges going into “t”. The two edges going from the 

source are clearly a cut, but its total capacity is 11 and it 

is therefore not a minimal cut. The red 6/6 edge and the 

4/4 have a sum of capacities of 10, but is not a 

disconnecting set and thus not a cut. The red edges in 

union with the 4/4 edge form a disconnecting set that is 

neither a cut nor minimal. 

There exists a number of algorithms for constructing 

the minimal cut and the maximum flow, with different 

running time in terms of number of edges and vertices; 

(Cormen et al, 1993). 

3.2 Augmentation path 

If a flow network allows a flow between the source 

and the sink we can find a path – called chain of edges 

in (Ford and Fulkerson, 1956) connecting them. The 

maximum flow through that path is the minimum 

capacity of any of the edges in the path.  

After “subtracting” this flow from the graph one can 

attempt to find an additional path (called “augmentation 

path”) connecting the source and the sink, and repeating 

this leads to the algorithm called Ford-Fulkerson based 

on (Ford and Fulkerson, 1956). 

Subtracting the flow means both reducing the 

capacities of the used edges, and adding a capacity in the 

reverse direction; the latter is needed since we will 

sometimes later reduce the flow through specific 

vertices. 

The path will later be used for error diagnostics, and 

thus redundant edges will cause a problem in at least two 

cases: 

If the graph has cycles a vertex could appear multiple 

times in the path, but that can only decrease the flow 

through the path and the algorithm thus avoids revisiting 

vertices. 

Additionally, if there are multiple sources a path 

could start at one source and then have an edge leading 

to a different source (and similarly for sinks). By 

treating all sources as visited at the start and avoiding 

revisiting vertices that is avoided for the sources, and by 

stopping at the first sink reached it is avoided for sinks.  

The current implementation does not use a breadth-

first search for the path, but that would naturally avoid 

the previous issues. 

A major restriction of the algorithm is that this only 

converges in a finite number of steps if the capacities are 

integers (or in general rational numbers); and has a 

running time of O(number of edges*maximum flow). 

This follows from the fact that we can find one 

augmentation path in running time proportional to the 

number of edges, and each augmentation path has a flow 

of at least one. 

We currently do not use any specific heuristic for 

finding the augmentation path, but a breadth-first search 

is generally a good heuristic avoiding specific problems 

for large maximum flow (Cormen et al, 1993). 

Assuming the maximum flow is small this simple 

algorithm compares favorably to recent algorithms; that 

instead are superior if the maximum flow is large or the 

capacities are real numbers; as their running time only 

depend on the number of edges and vertices. 

4 Min-cut and Clock partition 

We will now combine the clock partition and the flow 

network. 

4.1 Flow networks for synchronous models 

Based on a model with synchronous parts we can 

construct a flow network where the variables and 

equations that must be continuous are sources, and 

variables and equations that must be clocked are sinks. 

Both equations and variables are vertices in this 

graph, and edges connect equations to variables 

appearing in the equation – unless the variables appear 

inside certain primitives, in this paper we will only 

discuss sample and hold, but in general it also includes 

“Clock with Boolean condition”. The variables inside 

these primitives are instead sources or sinks. The edges 

are also added in the opposite direction (with the same 

capacity in both directions) so that we get a symmetric 

directed graph. Alternatively, we can replace this pair of 

edges with one bidirectional edge with capacities in both 

directions – initially equal. 
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Having edges in both directions implies that there are 

cycles in the graph, but the chosen algorithm can handle 

that.  

The capacities for all edges can be selected as positive 

integers; the exact values will be discussed later. 

 

Figure 3 Flow network for the model “Discretized” 

In Figure 3 we see the flow network corresponding to 

the previous model “Discretized” illustrating most of the 

concepts, where continuous equations and variables 

(argument of sample) are marked in yellow (and 

dashed outline) and clocked equations and variables 

(argument of hold) are marked in green. The der(z)-

variable is special and marked in lighter yellow (and 

dotted outline), indicating that without a solverMethod 

it must be in a continuous partition (which would cause 

a leak-flow between the partitions). There is also an 

edge from der(z) to z indicating that they should be in 

the same partition (in later graphs derivative-variables 

will not be separate nodes). Since there is a 

solverMethod attached to the clock-partition, der(z) is 

just a normal variable and there is no leak-flow.   

 

Figure 4 Incorrect assignClock 

In Figure 4 we have an incorrect model from MCP-

0030 (Frenkel, 2018). The corresponding flow network 

is shown in Figure 5, where the continuous part (due to 

time) is marked in yellow and the clocked part (due to 

when Clock()) in green, and the edges that are not part 

of the augmentation path are dotted. The arrows on the 

edges indicate the direction of the flow. 

The saturated edges (i.e., potential minimal cuts) are 

shown in red and wider. It is common that the saturated 

edges occur in pairs and the implementation handles 

that, but we will in the future investigate alternative 

formulations that avoid this. 

 

Figure 5 Synchronous simple flow network 

The graph is bipartite with equations and variables 

forming the two parts as is normal in Modelica, but since 

both sources and sinks can appear in both parts this fact 

does not seem useful for analyzing this flow network. 

This implies that the edges in the cut can go both from 

equation to variable and vice-versa. 

Note that the problem of assigning variables to 

equations in Modelica is equivalent to solving a 

maximum-flow problem on such a bipartite graph. 

4.2 The significance of the flow 

A correct model can be partitioned into zero or more 

clocked parts, and zero or more continuous parts. This 

corresponds to separating the graph into separate parts, 

and thus a zero flow.  

If the flow is positive it indicates that graph cannot be 

partitioned in this way and the flow gives “leakage” 

between continuous and clocked parts. If there are 

multiple disjoint errors there will be multiple “leakages” 

increasing the flow; i.e., a higher flow can be seen as an 

indication of a more incorrect model. 

The cut indicates which variables to remove from the 

equations to restore the partition. Replacing the 

variables by sample() or hold() variants of the same 

variables removes the edge, without excessively altering 

the model structure.  

Similarly, the corresponding path(s) between source 

and sink is important, since that allows the user to see 

that there is an unwanted path between the clocked and 

continuous parts. 

4.3 The capacities of edges 

The previous method would work for any set of positive 

integers as edge-capacities, and give some cut between 

clocked and continuous parts. 

Good diagnostics for errors can thus be seen as 

finding a suitable heuristic for the capacities. The basic 

idea is that we give high capacity to edges that we do 

not want in the cut-set; or roughly that high capacity 

corresponds to high trust in that equation. 

As a first attempt, we chose capacity 1 for edges 

corresponding to connection-equations, and 10 for other 

edges. In the future, we are considering having higher 

weights for equations from tested libraries. 

assignClock1 

periodicClock1 

1 s s 

clock 

startTime=0 

x 

z 

y 

2*x=sample(y, …) 

der(z)=x+1-z; 

y=hold(z) 

der(z) 

clock.y 

assign.u 

assign.y 

clock.y=f(time) 

connect(clock.y, assign.u) 

when Clock() then 

  assign.y=assign.u; 

end when; 

1/10 



Flow Network based Diagnostics for Incorrect Synchronous Models 

DOI Proceedings of the 13th International Modelica Conference 747 
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany 

  
4.4 Algorithm 

The following presents pseudo-code outlining the 

algorithm. Note that similarly as (Ford and Fulkerson, 

1956) it is not a completely specified algorithm as there 

are multiple ways of finding the augmentation path. 

Additionally, the source-cut part can use any 

algorithm that finds reachable nodes in a graph. 

 

Sources={time} 

Targets={} 

Edges={} 

 

// Build graph based on equations: 

for eq in Equations loop 

  // Low capacity for likely errors  

  cap=if eq is connection then 1 else 10; 

  for var in Incidence(eq) loop 

    if var inside sample then 

      Sources+={var}; 

      eq.isClocked=true; 

    elseif var inside hold then 

      Targets+={var};  

      eq.isNonClocked=true; 

    else 

      // Edge(from->to, cap) 

      Edges+={Edge(eq->var, cap)}; 

      Edges+={Edge(var->eq, cap)}; 

    end if; 

  end for; 

  if eq.isClocked then 

   Targets+={eq}; 

  end if; 

  if eq.isNonClocked then 

   Sources+={eq}; 

  end if; 

end for; 

 

// Ford-Fulkerson finding max-flow: 

maxFlow=0; 

loop  // Find path of edges having cap>0 

  augmentPath=FindPath(Sources, Targets); 

  if augmentPath=={} then 

    break; 

  end if; 

  // Possible flow for path 

  flow=min(e.cap for e in augmentPath); 

  maxFlow+=flow; 

  // Subtract augmentPath flow: 

  for e in augmentPath loop 

    e.cap-=flow;  

    reverse(e).capacity+=flow; 

  end for; 

end loop; 

 

// Find source-cut, i.e. the cut 

// closest to the source 

 

// We first find all vertices 

// reachable from the sources 

SourceConnected={}; 

AddTo=Sources; 

while not AddTo.empty() loop 

  vertex=AddTo.front();AddTo.pop_front(); 

  if not vertex in SourceConnected then 

    for e in Edges.from(v) loop 

      if e.cap>0 then 

        AddTo.push_back(e.target); 

      end if; 

    end for; 

  end if; 

end while; 

 

// Find all edges with 0 capacity 

// that leaves this set 

SourceCut={}; 

for v in SourceConnected loop 

  for e in Edges.from(v) loop 

    if e.cap==0 and  

      not (e.to in SourceConnected) then 

      SourceCut+={e}; 

    end if; 

  end for; 

end for; 

// And similarly for the target-cut 

 

5 Examples 

MCP-0030 (Frenkel, 2018) was made to solve the same 

problem as this paper. It contains one example of a bad 

model – shown in Figure 4. The rationale for the MCP 

was that earlier diagnostics just listed all equations and 

variables that failed for clock inference and it was not 

helpful for users. Note that the ideas presented here were 

implemented before the MCP. 

With the approach in this paper, this example gives 

the diagnostics: 

Continuous time parts and discrete parts don't 

decompose. 

  It is necessary to introduce sample or hold elements 

replacing: 

connect(clock.y, assignClock1.u); 

The following sequence indicates that the involved 

variables and equations are continuous time: 

clock.y :  

  clock.y = clock.offset+(if time < clock.startTime then 

0 else time- clock.startTime); 

However, this is in contradiction with 

assignClock1.u:  

  when assignClock1.clock then 
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    assignClock1.y = assignClock1.u; 

end when; 

The two sequences of equations and variables are 

constructed from the augmentation paths, cut according 

to the minimal cut. 

It could be even clearer by showing that clock.y is 

continuous due to using time, and in this case the 

connection between clock.y and assignClock1.y was the 

obvious culprit. 

We will now consider variations of an example from 

Modelica_Synchronous shown in Figure 6. 

 

 

Figure 6 Textbook controller 

If we had forgotten one of the synchronous primitives 

(there are two sample-blocks and one hold-block) the 

goal would be that diagnostics would recommend 

adding it. 

The possible errors will be listed starting from the one 

ones that are simplest to investigate, and then proceed to 

the more complicated ones. 

Without sample2 the diagnostics will pinpoint that: 

It is necessary to introduce sample or hold elements 

replacing: 

connect(ramp.y, feedback.u1); 

If sample2 were replaced by a gain-block the 

diagnostics would be: 

Continuous time parts and discrete parts don't 

decompose. 

  It is necessary to introduce sample or hold elements 

replacing: 

   connect(ramp.y, gain.u);  

or: 

   connect(gain.y, feedback.u1);  

or some variation of this. 

The two proposed corrections are two different min-

cuts (one close to source, one to sink). In general there 

could be a large number of possible min-cuts, and listing 

them all could be time-consuming and unlikely to help 

users. 

If both sample1 and sample2 are missing, the 

diagnostics state: 

It is necessary to introduce sample or hold elements 

replacing: 

connect(feedback.y, PI.u); 

This shows an interesting change, since the proposed 

change moves the feedback-component from the 
clocked part to the continuous part. 

If only sample1 was removed the method described 

so far would see two possibilities: 

connect(torque.tau, hold1.y); 

connect(speed.w, feedback.u2); 

The first suggestion has two problems: firstly, it 

would make more sense to remove the hold-block than 

introduce a sample-block, but secondly and more 

importantly, that model would not translate, since the 

der-operator is used in a clocked partition without 

solverMethod. 

That is handled by running the algorithm on a slightly 

different flow network, which is constructed by 

considering the der-operator part of the continuous 

partition. That results in: 

Continuous time parts and discrete parts don't 

decompose, when there is no solverMethod attached to 

the clock. 

  It is necessary to introduce sample or hold elements 

replacing: 

    connect(speed.w, feedback.u2); 

Without hold1 we get: 

Continuous time parts and discrete parts don't 

decompose, when there is no solverMethod attached to 

the clock. 

  It is necessary to introduce sample or hold elements 

replacing: 

    connect(torque.tau, PI.y); 

Indicating that the correction is instead to introduce 

hold1. 

If both sample1 and hold1 are missing the model is 

valid for check, but translation would give (flow 

network in Figure 7): 

Continuous time parts and discrete parts don't 

decompose, when there is no solverMethod attached to 

the clock. 

  It is necessary to introduce sample or hold elements 

replacing: 

    connect(speed.w, feedback.u2); connect(torque.tau, 

PI.y); 

The following sequence indicates that the involved 

variables and equations are continuous time: 

  speed.w : speed.w = der(speed.flange.phi); 

  torque.tau : torque.flange.tau = -torque.tau; 

  torque.flange.tau : 

load.flange_a.tau+torque.flange.tau = 0.0; 

  load.flange_a.tau : load.J*load.a = 

load.flange_a.tau+load.flange_b.tau; 

  load.a : load.a = der(load.w); 

However, this is in contradiction with 

  feedback.u2 : feedback.y = feedback.u1-

feedback.u2; 

  feedback.u1 : sample2.y = feedback.u1; 

  sample2.y : sample2.y = sample(sample2.u, 

sample2.clock); 
  feedback.y : feedback.y = PI.u; 

  PI.u : when Clock_0 then 

    PI.x = previous(PI.x)+PI.u/PI.Td; 

feedback controller plant reference 

load 

J=10 kg m² 

ramp 

duration=2 s 

- 
feedback torque 

tau 

PI 

PI 

Td=1 

sample2 

0.0 

hold1 

sample1 
periodicClock 

0.1 s s 
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    PI.y = PI.kd*(PI.x+PI.u); 

  end when; 

The sub clock, BaseClock_0.SubClock_1, includes 

derivatives, but no solver method is specified. 

The last line indicates that one way of correcting the 

model is to specify a solverMethod for the partition. In 

that case the plant-part will be discretized as part of the 

clocked partition.  

However, the first part of the error message indicates 

that another solution is to introduce sample and hold. 

This error message lists two connect-statements, and the 

users has to replace both of them. 

The part “The following sequence…” would as 

default be collapsed since it is quite long and only shows 

what is already stated. However, even if lengthy it still 

only lists relevant variables and equations, e.g. 

load.flange_a.phi and load_flange_b.phi are also part of 

the continuous-time partition – but they are not part of 

any augmentation path used and thus not included. 

6 Implications for models 

The examples demonstrate that no changes are needed 

to support these diagnostics. However, changes in 

models and/or the language can still be helpful to 

improve the diagnostics further.  

In particular, models representing external controllers 

can currently be written as 

model Controller 

  extends SI2SO; 

equation   

  y=do_step(u1, u2); 

end Controller; 

 

Here do_step is an external C function (possibly part 

of an FMU), and each do_step updates the internal state 

and thus it should be run at every sampling point of the 

inferred clock. 

That works in correct models where it is assigned to 

the clocked part and run at every sampling point. 

However, if the controller is incorrectly connected that 

can end up in the continuous part; which is not intended. 

Modelica 3.4 (Olsson (editor), 2017) has restrictions 

for impure functions, but if do_step is not declared as 

impure that will not generate diagnostics. For the future 

we might consider treating impure function as sinks in 

the graph. 

One possibility is to change the model to:  

model Controller 

  extends SI2SO; 

equation   

  when Clock() then 

    y=do_step(u1, u2); 

  end when; 

end Controller; 

 

That variant works and ensures that it is part of a 

clocked partition, providing better diagnostics – but it 

looks slightly distracting. A future possibility could be 

to introduce a form of “Clocked model” where all 

equations are seen as clocked.  

7 Future work 

For the future there are multiple lines of potential work 

– one is improving the current work by improving the 

diagnostics, another is using this for unrelated problems. 

7.1 Other uses of min-cut 

An obvious question is whether the same concept can be 

applied to other problems. 

The characteristics leading to min-cut being a good 

fit for this problem are: 

 Vertices can be partitioned into two parts where 

certain vertices (the sources and sinks) must be 

in certain partitions. 

 Corrections correspond to removing edges. 

If we consider the separation of variables into different 

clocks (and similarly for sub-clocks) we see that they 

sort of match the first, but not the second criteria: 

 One Clock could be a selected as a source and 

another Clock-variables as sink. This works if 

there are two Clocks mixed together that should 

not be mixed, but if there are three or more 

Clocks mixed together this is not ideal (but at 

least it produces some diagnostics). 

 However, removing an edge is not the only 

possible correction – another possibility is that 

the Clocks should be the same. 

Clock-partitioning diagnostics should thus both 

include the possibility of separating the graphs, and also 

changing the Clocks to be the same, i.e., we can view it 

as two distinct cases (like for missing solverMethod or 

missing sample and hold). 

For sub-clocks, the possibility of merging the clocks 

is even more complicated, since they can depend on 

multiple sub-clock factors. 

Unrelated to synchronous models we believe this 

kind of diagnostic can be useful when breaking 

dependencies using decouple to allow parallelization 

– as described in (Elmqvist et al, 2014). It cannot 

directly help with decouple failing to split the system 

of equations into smaller part, but it can detect that the 

two sides of decouple are connected in unexpected 

ways, which has a tendency to occur. 

7.2 Implementation 

The algorithm was originally implemented Dymola 

2019 (released in June 2018) and also in 3D Experience 

Platform 2019x. The handling related to solverMethod 

will be added in Dymola 2020, and all diagnostics are 

from that version. 
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Figure 7 Flow network for advanced example 
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