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Abstract 
ThermoSysPro (TSP) is a library for the modeling and 

simulation of power plants and energy systems. It has 

been developed by EDF and it is released under open 

source license. When developing models with TSP it is 

necessary to ensure that they match reality. In practice, 

this operation is performed by adjusting the value of the 

parameters appearing in the model. This major step 

corresponds to model calibration. 

Calibration can be performed through various 

methods. A classical way to do so with Modelica models 

is by model inversion. The major inconvenience of this 

method, in addition of potential convergence problems 

for complex models, is that it is necessary to have 

exactly the same number of measurements as 

parameters to be calibrated, which is not often the case 

in practice.  

This paper shows how data assimilation techniques 

can robustly be used for calibration of complex TSP 

models avoiding the inconveniences associated to 

calibration by model inversion while ensuring an 

optimal use of the available measurements. A complex 

TSP model of the secondary loop of a Pressurized Water 

Reactor (PWR) is considered for this purpose. 

 

Keywords: Modelica, ThermoSysPro, ADAO, data 

assimilation, model calibration, thermal-hydraulics, 
pressurized water reactor. 

1 Introduction and context 

Physical models of energy systems such as power plants 

can be advantageously used for the engineering of these 

systems all along their lifecycle from the design phase 

till the operation phase. They can be employed to test 

different design or retrofit alternatives, to evaluate the 

impact of changes in safety or environmental rules, to 

validate the performance of new components during 

their commissioning, to train operators, or even to help 

diagnose component’s failures or sensor’s drifts during 

operation and predict the system evolution in these 

conditions. 

Modelica (Modelica, 2018) is a language perfectly 

suited for this kind of modelling thanks to its equation-

based and acausal features:  

(1) The engineer can use physical equations to 

capture in the same model the different 

phenomena governing the system behavior from 

the mechanical, hydraulic, thermal, electrical, 

and so on points of view; 

(2) The equations are expressed in an acausal (i.e. 

non-oriented) way such that the engineer can 

reuse the same model for different computation 

purposes. From the same equation, one may, for 

instance, deduce the perfect sizing of a 

component to match a given operating point or 

compute the resulting operating point given the 

characteristics of on-shelf component. 

A generic Modelica library, called ThermoSysPro 

(TSP), has been developed by EDF to model and 

simulate power plants and other kinds of energy 

systems. It is released under open source license and 

freely distributed with the OpenModelica simulation 

tool (OpenModelica, 2018) downloadable here: 

https://openmodelica.org/download/download-

windows#. 

Numerous organizations and individuals worldwide 

now use TSP and a large spectrum of use-cases exist 

from nuclear, thermal, to combined-cycle through 

biomass or even concentrated solar plants (El Hefni B. 

and Bouskela D., 2017). 

In the design phase, the engineer has no other choice 

than calibrating such models with design assumptions 

and theoretical performances of each component issued 

from manufacturer data.  

In the operation phase, when measurements within 

the modelled system are available, it is possible to use 

them to calibrate the model. One way to perform 

calibration is by model inversion which consists in 

computing the values of n parameters that 

deterministically correspond to a given set of n 

measurements. Model inversion can be performed using 

the Modelica feature to express inverse problems. This 

method gives satisfying results but it can be difficult to 

implement in practice for complex models. The main 

drawbacks associated to this method are:  
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 the necessity to readapt some part of the model in 

order to express the inverse problem; in some cases  

it may require to develop new modules facilitating 

the convergence of the inverse model; 

 the necessity to consider exactly the same number 

of measurements as of parameters to calibrate 

(which does not happen often); 

 the fact that the different measurements are 

considered homogenously (even if they have not 

been obtained in the same conditions, or if the model 

is not intended to be representative of all the 

available measurements in the same way); 

 no consideration of measurement uncertainties 

(including on the boundary conditions of the 

model). 

Data assimilation framework (Asch M. et al., 2016; 

Bouttier B. et al., 1999; Kalnay E. et al., 2003) provides 

a number of alternative methods and techniques that can 

be used to overcome these difficulties during model 

calibration. 

For illustration purposes and to better understand the 

main differences between the two approaches, hereafter 

is presented a calibration problem of a simple TSP 

model, for more details see Modeling and simulation of 
a complex ThermoSysPro model with OpenModelica (El 

Hefni B. and Bouskela D., 2017). The model is 

presented in Figure 1. It corresponds to a singular 

pressure loss module with given boundary conditions (in 

this case the inlet and outlet pressures). 

 

Figure 1. Model of singular pressure loss 

The calibration of the model consists in determining 

the value of the pressure loss coefficient (K) of the 

pressure loss module. The measurement available to 

perform this calibration corresponds to the mass flow 

rate through the pressure loss module (Q). 

For the calibration by model inversion, the observed 

mass flow rate is directly used to compute the exact 

value of the pressure loss coefficient since both appear 

in the same physical equation. 

The corresponding physical equation is presented 

below: 

𝑃𝑖 − 𝑃𝑜 = 𝐾 ∙
𝑄 ∙ |𝑄|

𝜌
 

𝑃𝑖 and 𝑃𝑜 are the fluid pressure at the inlet and at the 

outlet of the singular pressure loss respectively, 𝜌 is the 

average density of the fluid, 𝑄 is the mass flow rate and 

𝐾 is the friction pressure loss coefficient. 

In the calibration using data assimilation techniques, 

the approach is different. From the physical knowledge 

of the system it is possible to give a guess value to the 

K coefficient (or use directly the default value of the 

TSP library), this corresponds to the a priori value of 

the parameter to be calibrated. This a priori value is 

used as a starting point and will be iteratively corrected 

to find the best value of the calibrated parameter, “best” 

in the sense that the results given by the model should 

be in the end as close as possible to the available 

measurements. 

The objective of the article is to show how data 

assimilation techniques can be used in general to have a 

more robust approach of the calibration phase. 

It illustrates on an industrial-size use-case, which is 

the model of the secondary loop of a pressurized water 

reactor, what are the concrete benefits of this approach 

compared to the traditional one in place using model 

inversion. 

2 Model of the secondary loop of a 

PWR 

2.1 Nuclear power plant performance 

monitoring  

The secondary loop of a 1300 MW PWR nuclear power 

plant has been modelled with TSP modules in order to 

determine the best efficiency rate that can be expected 

from the thermo-hydraulic cycle, given various 

boundary conditions. This theoretical best efficiency 

operation setpoint gives an estimation of several 

physical quantities like pressures and temperatures 

across the cycle. They are the references against which 

the on-site measurements will be compared, allowing to 

identify any deviation causing energy losses. These 

symptoms will then be processed in order to identify 

their potential causes. 

The more accurate the model is, the better the 

diagnosis will be. 

2.2 Model description 

Secondary loops of PWRs are classical Rankine cycles 

that convert thermal energy into electrical power. 

 

 
Figure 2. Model of 1300 MW PWR secondary loop with 

TSP 
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The TSP model developed to represent such PWR’s 

secondary loop is static and composed of the following 

key systems (Figure 2): 

 a turbogenerator set made of high-pressure (HP) and 

low-pressure (LP) turbines and one generator; 

 two sets of Moisture Separator Reheaters; 

 one condenser; 

 one feedwater tank and gas stripper system; 

 two turbine-driven feedwater pumps; 

 low (LP) and high pressure (HP) feedwater heaters. 

Once properly calibrated, the model calculates the 

nominal operation setpoint from thirteen boundary 

conditions. Among which the more important are: 

plant’s cooling water temperature and pressure, Steam 

Generator’s (SG) thermal power, SG’s moisture 

carryover level, SG’s pressure at the outlet, SG’s 

feedwater flow. 

3 Calibration methodology 

3.1 Data assimilation framework 

Data assimilation is a general well established 

framework (Asch M. et al., 2016) for computing the 

optimal estimate of the true state of a system, over time 

if necessary. It combines knowledge between 

observations and a priori models, including information 

about their errors. The goal is to obtain the best possible 

estimate of the system real state and of its stochastic 

properties. Moreover, data assimilation provides 

deterministic techniques in order to perform very 

efficiently the estimation job. Because data assimilation 

looks for the best possible estimate, its underlying 

procedure always integrates optimization in order to 

find this estimate.  

The calibration of a model consists in looking for the 

value (of part) of the parameters of a model, in such a 

way that the simulation obtained with these parameters 

is better adapted to real measurements on the same 

simulated system, in the sense that the distance between 

model predictions and measurements is smaller. The use 

of data assimilation for calibration requires the 

acquisition of measured information in the same 

conditions under which the simulated system is to be 

calibrated. The collection and prior analysis of these 

measurements also establishes elements of confidence 

and compared quality of the measurements, which will 

be interesting in the use of algorithms. In addition, the 

numerical model used must be functional over a validity 

domain that includes the range of variation of the 

parameters to be calibrated. 

All quantities representing the description of physics 

in a model are likely to be calibrated in a data 

assimilation process, whether they are model 

parameters, initial conditions or boundary conditions. 

Their simultaneous consideration is greatly facilitated 

by the data assimilation framework, which makes it 

possible to objectively process a heterogeneous set of 

available information. 

3.2 Data assimilation applied to 0D/1D 

models with ADAO 

To perform data assimilation, a specialized LGPL free 

distributed tool ADAO (Salome, 2018) is used to 

simplify the application of data assimilation for the 

simulation of complex systems. Available in the Python 

environment that allows the simulation of Modelica 

models and hence of TSP models, it allows to easily 

automatize the calibration of 0D/1D models and the 

development of complex calibration scenarios 

according to the states of the analyzed physical system. 

ADAO was initially developed to perform data 

assimilation with 2D/3D models. Its adaptation to 

0D/1D models has been coded during this work and now 

simplifies the specification of model parameters to be 

calibrated and simulated quantities to be compared to 

measurements, which are known in the Modelica 

description of the system. In addition, an advanced and 

simultaneous management of the various possible 

operating conditions enhances the physical 

representativeness of the overall calibration of the 

simulated system. 

The use of ADAO in a Modelica/Python environment 

allows to simply describe the data assimilation problem, 

through a Modelica representation of the simulation and 

of the named data for measurements as well as for the a 

priori values of the parameters to be calibrated. Since 

the different measurements are not obtained with the 

same sensors, the confidence accorded to the different 

available measurements can be easily modified as well. 

Moreover, when calibrating a large number of 

parameters, a sensitivity analysis can be performed to 

reduce the set of parameters that should be calibrated to 

the only ones that have a real impact on the quantities 

observed through the measurements. The entire data 

assimilation process is then automated and depends only 

on the ability of the model to simulate the system for the 

required parameter values through optimization. The 

stability and convergence of the simulated system over 

its entire domain of validity are therefore essential to 

allow an efficient search for a set of calibration 

parameters. The availability of complete or aggregated 

outputs provided by ADAO for a simulation ensemble 

is also crucial to ensure that the optimal simulation can 

be analyzed in detail and that the calibrated parameters 

are relevant. 

3.3 Calibration procedure 

The specialized tool ADAO allows to easily define the 

different elements necessary to perform model 

calibration using data assimilation techniques. These 

elements are: 



Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on 
the Secondary System of a Pressurized Water Reactor 

556 Proceedings of the 13th International Modelica Conference DOI 
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157553 

  
 Parameters (including initial conditions or boundary 

conditions if required) to be calibrated (with given 

a priori values); 

 Available measurements (taking into account 

whether they have been obtained under the same 

conditions, i.e. with the same boundary conditions, 

or not); 

 Modelica model (describing the physical connection 

existing between the parameters to be calibrated and 

the observations/measurements). 

It is important to note that a variable confidence error 

can individually be associated to the different 

measurements available, under the form of a covariance 

matrix. This information is then used by ADAO to 

compute the optimal values of the parameters. This 

process is illustrated in Figure 3 (in blue the necessary 

information to be provided to ADAO). 

 
Figure 3. Illustration of the calibration procedure using 

data assimilation techniques 

3.4 Analysis criteria 

In order to evaluate how good a calibration of the model 

is, it is necessary to establish a certain number of 

criteria. In a model calibration procedure as here, the 

objective is that the variables computed by the model are 

as close as possible to the available measurements. 

Therefore, these indicators should be based on the 

differences between the available on-site measurements 

and the corresponding variables computed by the model. 

In this paper, two different criteria are considered. 

Firstly, a global indicator that it is equal to the sum of 

the quadratic difference between the measurement and 

the corresponding variable in the model, for all the 

available measurements. This indicator is not very 

different from the cost function value minimized by 

ADAO in the calibration procedure. It provides a 

general overview of a given calibration. Secondly, an 

indicator for each measurement, considered 

individually, is necessary in order to detect a calibration 

that is unacceptable (i.e. outside of its a priori 
confidence interval) for a given measurement while 

being correct globally. For each measurement, the 

relative difference between this measurement and the 

corresponding model output is computed. The relative 

difference is defined as the absolute value of the ratio 

between the difference between the measurement and 

the model output and the value of the measurement. It 

provides therefore a homogenous indicator for all the 

available measurements. This indicator can as well be 

used to check precisely if the calibrated model is more 

representative for certain measurements, judged to be 

more important than the others. 

4 Calibration of the secondary loop of 

a PWR  

4.1 Scenario description 

The calibration of the TSP model of PWR’s secondary 

loop (Figure 2) is performed over 116 parameters. For 

comparison purposes, the same observations as for the 

calibration by model inversion are considered. They 

correspond to pressure, mass flowrate and temperature 

measurements. These observations correspond to 116 

measures obtained in ten campaigns of measurements. 

Therefore, in total 10x116=1160 observations are used 

to perform the model calibration. However, contrary to 

the calibration by inversion, the observations are 

considered simultaneously for the calibration presented 

in this study. The use of ADAO and preprocessing 

facilities allows to adapt the boundary conditions for 

each set of 116 observations. 

The calibration of the model is performed for two 

different configurations, which mainly differ from the a 

priori values given to the parameters as an initial guess. 

In the first configuration the a priori values for the 

parameters to be calibrated correspond to the values 

obtained by model inversion. In the second one, typical 

a priori values are considered, corresponding to what 

can be found in technical data sheets of the modeled 

components. This second case would correspond to a 

typical calibration procedure while the first one shows 

how data assimilation methods can improve the 

calibration obtained by the classical model inversion 

method which is now in current use in our engineering 

divisions. 

For the first configuration, the following sub-

scenarios are studied: 

 High confidence on observations (scenario 1); 

 High confidence on observations but according 

more confidence to some of them that are 

considered as more meaningful (scenario 2). 

For the second configuration, the following sub-

scenarios are considered: 

 High confidence on observations (scenario 3); 

 High confidence on observations but considering a 

reduced number of parameters to calibrate (the 

selection of these parameters is performed through 

a sensitivity analysis, 62 parameters are kept) 

(scenario 4). 

For each scenario, the domain in which the optimal 

value of the parameters is searched is adjusted in order 

to ensure the convergence of the simulated model (see 
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3.2 for more details). These research domains are 

indicated in Table 1. 

Table 1. Research domain for the optimal value of 

calibrated parameters. 

Scenario Research domain  

Scenario 1 5% around a priori values 

Scenario 2 5% around a priori values 

Scenario 3 10% around a priori values 

Scenario 4 60% around a priori values 

 

It appears clearly that reducing the number of 

parameters to calibrate enables to enlarge the research 

domain for the optimal value of the parameters: the 

convergence of the model is facilitated compared to the 

situation in which all the parameters have to be 

calibrated and may vary. 

4.2 Results and discussion 

First of all, it is important to examine the optimal value 

of the parameters given by the data assimilation 

procedure. A key point is to check if the optimal value 

of the calibrated parameter reaches the bounds of the 

research domain. In such case, it is probable that right 

optimal value of the parameters is not reached. If there 

were no limitations, or if the non-convergence situations 

could be avoided, the calibration of the model would be 

more trustful. Table 2 summarizes this aspect for the 

scenarios described in the previous section: it indicates 

the number of times that the bounds of the research 

domain for a given parameter are reached. 

Table 2. Number of times the bounds of the parameters 

research domain are reached. 

Scenario Number of times the bounds of 
the research domain are 

reached 

Scenario 1 3 

Scenario 2 1 

Scenario 3 73 

Scenario 4 9 

 

For the scenarios in which the starting values of the 

parameters is the one obtained by model inversion 

(Scenarios 1 and 2), it can be checked that, even with a 

small research domain, the bounds are rarely reached. 

This seems logical as the value of the parameters 

obtained by model inversion is supposed to be close to 

an optimal value. For the scenarios in which typical a 
priori values are considered, the bounds of the domain 

research are often reached when all the parameters are 

kept. If the number of parameters is reduced and the 

research domain is enlarged (as in scenario 4 with 

respect to scenario 3), reaching the bounds is largely 

reduced: 63% of calibrated parameters reach the bounds 

in scenario 3 compared to only 15% in scenario 4. 

In order to evaluate how good the calibration is, an 

overall indicator is the quadratic difference between the 

observations and the model output (for the 1160 

observations), see paragraph 3.4. The smaller this 

quadratic difference is, the better the calibration is. 

Table 3 summarizes this result for the four scenarios 

studied in the present work and for the calibration 

performed by model inversion, the so-called Inverse 
calibration. The results are presented based on the result 

obtained for the Inverse calibration method (a value 

lower than 1 indicates that the result is better than the 

result obtained by model inversion and a value higher 

than 1 indicates that it is worse). 

Table 3. Quadratic difference between the observations 

and the model output – Inverse calibration as a reference 

Scenario Quadratic difference 

Inverse calibration 1 – Reference result 

Scenario 1 0.166 

Scenario 2 0.245 

Scenario 3 4.483 

Scenario 4 0.167 

 

In Table 3, the most important point is the value of 

the quadratic difference compared to the one obtained 

by model inversion that is set to 1 for comparison 

purposes. For scenarios 1 and 2, results show that this 

difference is largely reduced (almost by a factor from 5 

to 10, especially for scenario 1). This show how data 

assimilation can improve an existing calibration. 

For scenarios starting from typical a priori values, the 

results are very encouraging as well. When all the 

parameters are considered (scenario 3), the quadratic 

difference is only a few times higher than the one 

obtained by model inversion. However, when a fewer 

number of parameters are kept but with a larger 

variation range as indicated in Table 1 (scenario 4), 

Table 3 shows that the quadratic difference is much 

smaller than the one obtained by model inversion: 

similar results as for scenario 1 are obtained. This shows 

how important it is to ensure the model convergence in 

a domain as large as possible (scenario 3 should give 

better results than scenario 4, however as indicated in 

Table 2 for scenario 3 a large number of parameters 

reach the bounds of their research domain).  

In addition of the overall overview of the calibration, 

it is important to ensure that the calibration provides 

good results for each observation separately, avoiding 

for example to reduce the error obtained for one single 

observation and increasing it for a large amount of them. 

As presented in section 3.4, a good indicator can be for 

example the relative difference between a given 

observation and the corresponding model output. Table 

4 shows how many times this relative difference 

(averaged over the ten campaigns of measurements) is 

minimal, with a certain tolerance, for the 116 

observations. 
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These results show that this indicator is improved (or 

at least not worsened) when starting from the values of 

the parameters obtained by model inversion, especially 

for scenario 2. This shows that even observation by 

observation, considered separately, data assimilation 

techniques can improve the model calibration. For 

scenarios 3 and 4 it is shown that good results are 

obtained for a significant number of observations as 

well.  

Table 4. Results with respect to the relative difference 

between a given observation and the corresponding model 

output. 

Scenario Number of times that the 
relative difference between a 
given observation and the 
corresponding model output is 

minimal (with a tolerance of 

10%) 

Inverse calibration 48 

Scenario 1 48 

Scenario 2 67 

Scenario 3 27 

Scenario 4 25 

 

Finally, in order to illustrate the effect of modifying the 

confidence on certain observations, a focus is performed 

on the observations for which a higher confidence has 

been considered (in scenario 2, compared to scenario 1 

in which all the observations were considered in the 

same manner). These results are not provided for 

scenarios 3 and 4 since no specific focus on these 

observations was performed. Table 5 summarizes these 

results. The observations for which a higher confidence 

has been given, i.e. considered as more meaningful, are 

numbered from 1 to 16. For these observations, the 

relative difference between the observations and the 

corresponding model output (averaged over the ten 

campaigns of measurements) is indicated for the 

calibration by model inversion and for scenarios 1 and 

2. For each observation, the minimal relative difference 

is put in bold. Moreover, the last line of Table 5 

indicates the quadratic difference obtained over this 

subset of observations (as in Table 3, the results are 

given with respect to the results obtained with the 

calibration method by model inversion). 

Table 5. Comparison between observations and model 

output for the observations on which a higher confidence 

is given. 

Observation 
number 

Inverse 
calibration 

Scenario 1 Scenario 2 

1 1.66% 1.54% 1.33% 

2 1.51% 1.51% 1.54% 

3 1.50% 1.39% 1.31% 

4 0.74% 1.09% 0.44% 

5 4.28% 4.30% 4.33% 

6 0.85% 0.99% 0.89% 

7 0.36% 0.40% 0.34% 

8 0.41% 0.32% 0.29% 

9 0.33% 0.23% 0.21% 

10 0.37% 0.25% 0.23% 

11 0.11% 0.20% 0.18% 

12 0.14% 0.10% 0.10% 

13 0.67% 0.72% 0.59% 

14 1.05% 0.87% 0.83% 

15 1.07% 0.88% 0.82% 

16 1.42% 1.16% 1.31% 

Overall 

quadratic 

difference 

1 - Reference 0.822 0.676 

 

Table 5 shows that scenario 2 provides better results 

for a large part of these observations considered 

individually (and when this is not the case, the relative 

difference is still very close to the one obtained by 

inverse calibration or in scenario1). Moreover, the 

overall indicator, giving the quadratic difference for this 

subset of observations, shows clearly that in both cases 

(scenario 1 and 2) the overall results obtained by data 

assimilation techniques are better than those obtained by 

model inversion. Therefore, it is possible, using data 

assimilation techniques, to easily obtain different 

calibrations of the model according to what the model is 

intended for or according to the quality of the 

observations. 

These results show how the application of data 

assimilation techniques for the calibration of complex 

TSP models can give good calibration results, both in 

providing or in improving the optimal value of the 

calibrated parameters. Moreover, these calibration 

results can be obtained in about one day of calculations, 

compared to several weeks for the calibration by model 

inversion currently required (including the development 

of an inverse model, the pre-treatment of the 

measurements initially available and the different post-

treatment techniques required to determine the optimal 

value of the parameters).  

5 Conclusion and perspectives  

A new method for robust and reliable model calibration, 

based on data assimilation techniques, for complex TSP 

models is currently under development. It already shows 
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its important benefits compared to the traditional 

method using model inversion. 

The results presented in this paper show how the 

application of data assimilation techniques to calibrate a 

complex TSP model of the secondary loop of a PWR is 

able to improve the calibration obtained by model 

inversion. In addition, it shows how a usual calibration 

procedure using these new techniques, coupled with a 

sensitivity analysis of the model, can as well provide 

better results than the traditional calibration method. 

Therefore, compared to calibration by model 

inversion, this new method enables to handle 

conveniently situations that could not be treated before, 

or that would have required an important number of pre-

treatments. For example, when more measurements than 

parameters to be calibrated are available, with the 

calibration by model inversion method, it was necessary 

to make a choice and loose some information, whereas 

with the new method presented in this paper it is not 

necessary. On the contrary, if not enough measurements 

are available it is not possible to calibrate the whole set 

of parameters using the traditional inversion method, 

whereas calibration approach based on data assimilation 

techniques is able to provide an optimal value for the 

whole set of parameters using efficiently all the 

available information. In addition, the consideration of 

measurements obtained in different operating conditions 

is greatly facilitated by data assimilation since they can 

all be considered simultaneously (it is therefore not 

necessary to post-treat independently the results 

obtained individually by one model inversion per each 

operating condition or campaign of measurements). 

Moreover, for some complex models, calibration by 

model inversion requires to develop new inverse 

modules when the convergence for inverse calculation 

is difficult, which may be very time-consuming. 

In other word data assimilation method allows to 

automatize the model calibration procedure and hence 

to considerably reduce the time necessary to its 

calibration. Furthermore, it paves the way to improve 

the calibration accuracy, by enabling the use of 

additional information (e.g. more measurements than 

those strictly necessary for calibration by model 

inversion), or the use of available information in a 

specific way (e.g. according more confidence to some 

measurements). However, it is important to keep in 

mind that a good knowledge of the modelled system and 

of the model itself is very important in order to ensure 

that the results obtained applying data assimilation 

techniques are physically correct. 

In the future, the current improvements under 

development should facilitate the application of this new 

calibration method. A major aspect is to ensure the 

convergence of the model over a large domain so that 

data assimilation techniques can provide even better 

results. Work on model initialization will in particular 

be done within the ongoing FUI ModeliScale project in 

partnership with Dassault Systèmes, INRIA and 

Phiméca. Other important point is from the 

methodological point of view to study: (1) how 

complementary studies such as sensitivity analysis of 

the model can be used more efficiently to properly 

formulate the calibration problem (e.g. by considering 

for calibration only the parameter that have a real impact 

on the variables of interest considered); (2) how data 

assimilation could be used for other purposes such as 

state estimation or prognosis. 
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