
DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 491
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

DAE Solvers for Large-Scale Hybrid Models
Henningsson, Erik and Olsson, Hans and Vanfretti, Luigi

491

DAE Solvers for Large-Scale Hybrid Models

Erik Henningsson1 Hans Olsson1 Luigi Vanfretti2

1Dassault Systèmes AB, Lund, Sweden, {Erik.Henningsson, Hans.Olsson}@3ds.com
2Rensselaer Polytechnic Institute, Troy, NY, USA, vanfrl@rpi.edu

Abstract
We present a strategy for DAE mode simulations of
large-scale Modelica models with state events. DAE
solvers can be orders of magnitudes faster than traditional
ODE solvers when simulating models with large algebraic
loops. Such loops are common in, for example, power
grid models. Central for our DAE mode approach is the
accurate and efficient treatment of state events. Adapting,
extending, and optimizing results known in the literature
to the Modelica context resulted in a DAE mode imple-
mentation first released in Dymola 2019 and 3DEXPE-
RIENCE 2019x. The implementation is verified by effi-
ciency experiments featuring OpenIPSL power grid mod-
els. The run times for these models are competitive with
domain-specific, state-of-the-art simulation tools.
Keywords: DAE mode, hybrid model, state event, large-
scale, Modelica, power grid model

1 Introduction
As a high-level, equation based, and object-oriented lan-
guage Modelica promotes easy construction, modifica-
tion and reuse of models. It is therefore well suited for
modeling large-scale, integrated physical systems, see e.g.
(Baudette et al., 2018; Casella et al., 2016; Jorissen et al.,
2015).

With the increased presence of such large-scale models,
higher demands are put on Modelica tools to facilitate fast
simulations. To meet those demands, special model struc-
tures are typically analyzed and exploited (Casella, 2015).
Examples of strategies that have been successfully real-
ized in Modelica tools, such as Dymola and the 3DEXPE-
RIENCE platform, involve: multirate simulation (Thiele
et al., 2014), mixed-mode simulation (Schiela and Olsson,
2000; Thiele et al., 2014), model decoupling and paral-
lel execution (Elmqvist et al., 2014), and sparse solvers
(Braun et al., 2017).

In this paper we will consider the strategy referred to
as DAE solver or DAE mode. The name comes from the
mathematical representations of Modelica models: hybrid
differential-algebraic equations (DAEs). When generat-
ing simulation code a Modelica tool performs a series of
symbolic transformations involving common subexpres-
sion elimination, equation sorting, index reduction, and
tearing (Cellier and Kofman, 2006). During this process
the high-index DAE is transformed into an index-1 DAE,
and then, by solving systems of equations, it is normally

transformed into an ordinary differential equation (ODE).
The latter can be integrated by an ODE solver like CVode
(Hindmarsh et al., 2005). For most models the transforma-
tions make the numerics simpler and result in more robust
and efficient simulations.

However, some numerical integrators, such as Dassl
(Brenan et al., 1996), also allows integration of the index-1
DAE directly. For certain models, such DAE mode sim-
ulations can be orders of magnitude faster, among other
things, due to more efficient treatment of algebraic loops.
Significant speed-ups have, for example, been observed
when simulating national- and continental-sized models
of electrical power systems (Braun et al., 2017). Rosen-
brock DAE integrators were used by (Olsson et al., 2017)
to achieve fast and predictable run times for model-based
embedded control.

The goal of this paper is to present a strategy for ro-
bust, accurate, and efficient simulation of hybrid DAEs
using DAE integrators like Dassl. Because integration of
the index-1 DAE is well-understood, the main focus will
be on how to accurately and efficiently localize and treat
state events. To achieve this, we will argue for an approach
where the same generated code is used in DAE mode as in
ODE mode. By using all the symbolic transformations
and optimizations, the DAE fed to the integrators is kept
to a minimal size. The trade-off here being some loss of
sparsity (Braun et al., 2017; Magnusson, 2016). As an out-
look we will also discuss further benefits and possibilities
enabled by this approach.

Based on this strategy, DAE mode for hybrid DAEs was
introduced in Dymola 2019 (released in June 2018) and
3DEXPERIENCE 2019x for a diverse selection of numer-
ical integrators. The efficiency and accuracy of the imple-
mentation is verified by simulations of the Nordic power
grid model Nordic 44 from the OpenIPSL library (Van-
fretti et al., 2017).

2 DAE mode for hybrid systems
2.1 Mathematical formulation
Mathematically, Modelica models are represented by hy-
brid DAEs. That is, differential-algebraic equations that
may have discontinuities and/or may be controlled by dis-
crete variables and conditions that change at events.1 The

1Note that varying-structure models and multi-mode simulations are
out of scope of this paper.

DAE Solvers for Large-Scale Hybrid Models

492 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

general form of the DAE is

F(t, ẋ,x,y,d) = 0, (1)

where t denotes the independent time and y the algebraic
variables. Further, x are the differential variables and ẋ
are their time derivatives. The discrete variables, which
may change value only at events, are denoted by d. For
the initial value problem to be well-defined, appropriate
initial conditions must also be supplied.

Throughout the simulation time- and state-dependent
crossing functions

c = q(t, ẋ,x,y,d) (2)

are monitored for sign changes. The variable c repre-
sents the conditions of all if- and when-clauses. At zero-
crossings an event is triggered. If the corresponding cross-
ing function qi depends on any of ẋ, x, or y it is called
a state event, otherwise a time event. The former are
more difficult to locate and their combination with DAE
mode simulations is the main topic of this paper. When
an event is triggered a reinitialization is performed using
the DAE (1) and the crossing equations (2) together with
additional discrete equations

d = η(t, ẋ,x,y,pre(d),c). (3)

Here pre(d) are the previous values of the discrete vari-
ables. For details see (Olsson, 2017, Appendix C). This
combination of equations defines a continuous-discrete
mixed system of equations to be solved for the derivatives
ẋ, the algebraic variables y, the discrete variables d, and
the conditions c. Together, the three systems (1) – (3) de-
fine a hybrid differential-algebraic equation.

To construct simulation code a Modelica tool, such as
Dymola, applies several symbolic transformations to the
original hybrid DAE. These steps involve e.g. common
subexpression elimination, sorting, index reduction, and
tearing. For details see (Cellier and Kofman, 2006). Dur-
ing the process of reducing the index to one, the number
of differential variables may decrease and the number of
algebraic equations may increase. As the goal of these
transformations is to transform the DAE (1) into an ODE
the tool will select states x(t) ∈Rnx and solve for the state
derivatives. Each derivative ẋi that cannot be solved for
symbolically is replaced by an algebraic variable x̂i and
the equation ẋi = x̂i.

For a typical Modelica model a significant part of the
algebraic variables y in the original DAE (1) do not af-
fect the dynamics of the model. These are the auxiliary
variables and are not required during continuous simula-
tion. We will therefore exclude them from the DAE pro-
vided to the numerical integrator. However, they must be
computed when evaluating the crossing equations (2) and
the discrete equations (3) and we must therefore consider
them when locating and resolving events.

The symbolic transformations turns the original sys-
tem into a sequence of assignment statements intertwined

with smaller (nonlinear) systems of equations, the alge-
braic loops. These loops are then torn to minimize their
size (Elmqvist and Otter, 1994). Denote by nG the num-
ber of loops that affect the dynamics. Further, denote by zi
the iteration (tearing) variables of loop i, where zi(t)∈Rni ,
ni ≥ 1. These normally constitute a small subset of the al-
gebraic variables. The algebraic loops are represented by
the systems of equations

0 = Gi(zi; t,x,z1, . . . ,zi−1,d), (4)

for i = 1, . . . ,nG. Due to the equation sorting each alge-
braic loop is independent of later ones. The functions Gi
do not depend on the state derivatives ẋ, since these were
either solved for or substituted for an algebraic variable as
described above.

The goal of the symbolic transformation is to causalize
the DAE into an ODE,

ẋ = f̂ (t,x,d). (5)

Here, the algebraic variables z and the algebraic loops are
internal to the ODE. Thus, the evaluation of f̂ requires the
solution of the systems of equations defined in (4), which
may be solved in sequence, separate from each other.

For the DAE mode approach presented in this paper we
consider the DAE in the form it takes after all of the sym-
bolic transformations have been performed, with one ex-
ception: the iterative solution of algebraic loops. Note that
the loops that can be solved symbolically are still solved
in that way, involving linear loops and the inversion of el-
ementary functions like sin. Thus, we elevate, from the
function f̂ , the loops that cannot be solved symbolically
and arrive at the semi-explicit, index-1 DAE of interest
for this paper

ẋ = f (t,x,z,d), (6a)
0 = G(z; t,x,d), (6b)

where z = (zT
1 , . . . ,z

T
nG
)T and G = (GT

1 , . . . ,G
T
nG
)T. The im-

portant difference between f̂ and f is that the evaluations
of the latter do not require the solution of the loops (4),
rather the algebraic variables z are inputs.

The remaining algebraic variables y can be computed
from the variables in Equation (6). The computation of
the subset of y that affects the dynamics is internalized in
f and G. By construction, these computations are merely
assignment statements.

Similarly, the computations of y can be internalized in
the crossing functions, giving

c = Q(t, ẋ,x,z,d).

Note that computing the auxiliary part of y may in-
volve solving further (torn) algebraic loops, not consid-
ered in the dynamics.2 Thus, computing all of y from

2Alternatively these algebraic loops for auxiliary variables may also
be handled by the integrator, resulting in better predictors for the in-
volved variables.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 493
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

the variables in Equation (6) may be expensive. However,
the crossing functions themselves qi are typically cheap.
Therefore, computing several crossing functions Qi with
the same input is not significantly slower than computing
just one.

2.2 Continuous simulation in ODE mode
Since Modelica models are often stiff, implicit numerical
time-stepping schemes are commonly used to integrate the
ODE (5). This procedure requires, at each time step, the
solution of one or more nonlinear systems of equations in-
side the integrator. For example, for a multistep method,
such as the BDF methods implemented in Dassl, the sys-
tem

1
Chn

xn− f̂ (tn,xn,dn) = old(f̂ ,x), (7)

has to be solved for the next approximation xn of the state.
Here C denotes a method-dependent constant, hn is the
current step size, and old(f̂ ,x) is a linear combination of
old f̂ -evaluation and x-approximations. Similar equations
have to be solved to find the stages if using an implicit
Runge–Kutta method, such as the Radau schemes (Hairer
and Wanner, 1996).

The integrator equation (7) is typically solved by a
quasi-Newton iterative method. In each iteration a linear
system of equations is solved using the Jacobian

Ĵ =
1

Chn
I− ∂ f̂

∂x
,

where I is the identity matrix. Even though the Jacobian is
not updated each iteration, in fact not even with each time
step, the evaluation of ∂ f̂

∂x is one of the major bottlenecks
when simulating a large Modelica model.

The Jacobian Ĵ is normally approximated numerically
using finite differences, which requires a large number
of f̂ -evaluations. As previously mentioned, each f̂ -
evaluation requires the solution of the algebraic loops (4).
Thus, solving Equation (7) may involve treating nested
nonlinear systems of equations.

To illustrate the problem, consider that the cost for con-
structing and factoring a Jacobian often grows superlin-
early in the number of variables. This complexity depends
on the sparsity structure of the Jacobian and what other
optimizations are applied. In the worst case scenario the
construction cost can grow quadratically and the factor-
ization cost cubically. With this in mind, the cost for con-
structing (but not factoring) the integrator-Jacobian Ĵ can
be approximated as

cĴ ≈ const. ·npx−1
x ·

(
crem(nx)+

nG

∑
j=1

npi
i

)
,

where px ∈ [1,2] and pi ∈ [1,3] depend on how well spar-
sity and other optimizations can be utilized. The last factor
is the cost of one f̂ -evaluation, where crem(nx) denotes the

total cost of everything in the f̂ -evaluation, except the al-
gebraic loops. This term typically grows with the num-
ber of states nx. The factor npx−1

x is the number of f̂ -
evaluations required. For certain models, the size ni of
some of the algebraic loops may be as large as the number
of states nx or even larger. Note that several optimizations
are applied in Dymola to keep the exponents px and pi
small, with the aim to minimize the above cost. Especially
when constructing the integrator Jacobian.

Further f̂ -evaluations are required to compute the resid-
uals in the Newton iteration for the next step (7). Also
at output points and events the model must be evaluated.
However, for models like Nordic 44, considered in Sec-
tion 4, the construction of integrator Jacobians dominate
the simulation cost in ODE mode.

2.3 Continuous simulation in DAE mode
When integrating using the DAE mode proposed in this ar-
ticle, the algebraic loops are elevated and solved by the in-
tegrator. Rather than hiding the loops in Equation (5) they
are handed to the integrator via the semi-explicit DAE for-
mulation (6). When evaluating f the algebraic variables
must be known prior to the evaluation. This means that, in
DAE mode, the integrator has to handle also the iteration
variables z.

One important benefit of the DAE mode approach pre-
sented in this paper is that the problem size is kept to a
minimum by using the sorting and tearing information.
The state vector consists of the vectors x and z. If the
DAE solver was instead applied directly to the DAE (1) it
would have had to solve for x and all of y.

Applying e.g. a multistep method to Equation (6)
yields, in analog to Equation (7), the integrator equations

1
Chn

xn− f (tn,xn,zn,dn) = old(f ; x,z),

G(zn; tn,xn,dn) = 0,
(8)

to be solved for the next approximations xn and zn. The
corresponding Jacobian needed for the quasi-Newton so-
lution of these equations is

J =

1
Chn

I− ∂ f
∂x − ∂ f

∂ z1
− ∂ f

∂ z2
· · · − ∂ f

∂ znG
∂G1
∂x

∂G1
∂ z1

0 · · · 0
∂G2
∂x

∂G2
∂ z1

∂G2
∂ z2

· · · 0
...

...
...

. . .
...

∂GnG
∂x

∂GnG
∂ z1

∂GnG
∂ z2

· · · ∂GnG
∂ znG

,

where we have considered the algebraic loops separate
from each other to reveal the sparsity pattern that is given
by construction.

The cost for a numerical approximation of the DAE
mode Jacobian J differs in its structure from the cost of
the ODE Jacobian Ĵ. An approximation of the complexity

DAE Solvers for Large-Scale Hybrid Models

494 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

can be written as

cJ ≈ const. ·

(
nx +

nG

∑
j=1

ni

)p−1

·

(
crem(nx)+

nG

∑
j=1

ni

)
,

where p ∈ [1,2] depends on how effectively sparsity can
be used to minimize the number of f -evaluation. Since
the state vector is longer in DAE mode the Jacobian is
larger and more right-hand-side evaluations are typically
needed. However, instead of solving the algebraic loops
the DAE solver just inquires for their residuals Gi giving
the smaller second factor in the cost. Comparing with the
cost for approximating Ĵ one can conclude that comput-
ing one Jacobian in DAE mode is much faster when there
are large algebraic loops with non-trivial sparsity structure
(pi > 1). Throughout this paper these are the type of mod-
els we consider.

2.4 Event handling in ODE mode
During integration the crossing functions (2) are moni-
tored, applying special care to correctly handle multiple
zero crossings in the same crossing function.

When zero crossings are detected in one or more cross-
ing functions, the state x is interpolated and a root finding
algorithm is applied to accurately find the time of the first
zero crossing. Each of the crossing functions Q̂i is scalar-
valued and defines, together with Equation (5), a system
of nonlinear equations

ẋ = f̂ (t,Px(t),d),

0 = Q̂i(t, ẋ,Px(t),d),
(9)

in the variables t and ẋ. The interpolation polynomial for
the state x is denoted by Px(t). Note that the algebraic
variables z have here been internalized in Qi giving Q̂i,
compare with f and f̂ in Equations (5) and (6).

Noting that the algebraic variables are solved for with
a high accuracy in ODE mode, the above root finding ap-
proach guarantees that the solution will be in a consistent
state when a crossing is detected and an event iteration is
started. See for example (Eich-Soellner and Führer, 2008,
Chapter 6) for details on how to locate the first zero cross-
ing using iterative methods.

2.5 Event handling in DAE mode
When simulating in DAE mode the integrator handles the
algebraic variables z and approximates them to fit the sup-
plied integrator tolerance. Similarly to the ODE case we
may use the, now extended, state vector (x;z) to monitor
the crossing functions (2). Further, we may interpolate the
whole extended state when solving for the first crossing

ẋ = f (t,Px(t),Pz(t),d), (10a)
0 = Qi(t, ẋ,Px(t),Pz(t),d). (10b)

However, the integrator tolerance is several orders of
magnitude larger than the tolerance for the solver of the al-
gebraic loops in ODE mode. This means that the algebraic

equations (4) will generally not be fulfilled at the time of
crossing (10). The upcoming event iteration will then start
in an inconsistent state; the algebraic equations not being
accurately fulfilled. Severe problems may be experienced
when Equations (1), (2), and (3) are to be simultaneously
solved for a consistent restart state.3

Example 1. Consider the Modelica Standard Library
model EngineV6, which is a multibody model of a V6
engine, see Figure 1. To compute the force generated by
the combustion in an engine cylinder the piston velocity
is monitored. An event is triggered and the integration is
restarted when a piston velocity changes direction.

Figure 1. EngineV6, a multibody model of a V6 engine from
the Modelica Standard Library.

Figure 2. Inconsistent solution state causing empty events and
problems to locate the correct time of the zero crossing.

Monitoring the crossing functions and locating the zero
crossings according to Equation (10) gives the result of
Figure 2, where the piston velocity of the second cylin-
der is used as an example. At time t ≈ 0.06322196
Equation (10) signals for a zero crossing and an event
is localized. Starting the event iteration, the crossing
time t and interpolated state Px(t) are used as input
and the algebraic variables y are solved for, cf. Sec-
tion 2.1. Being an algebraic variable, the piston velocity
cylinder2.Cylinder.v, is thus solved for with high

3Similarly, the state derivatives ẋ may also be interpolated rather than
computed from Equation (10a). However, the same problems as when
interpolating z are to be expected.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 495
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

accuracy. With the integrator error removed from the ve-
locity it jumps up to its consistent value of approximately
4 · 10−5 m/s. This renders the event empty since the cor-
responding crossing function Qi(t, ẋ,Px(t),z,d) is again
positive and no discrete variables were changed. The inte-
gration restarts and the process repeats a few times (cannot
be seen in the figure since the subsequent velocity jumps
are of very small scale). When sufficiently close to the
correct crossing time t ≈ 0.06322220 the event is at last
correctly handled. 4

To make sure that the solution is in a consistent state
at zero crossings in DAE mode it is suggested by (Eich-
Soellner and Führer, 2008, Section 6.3.8) to accurately
solve the algebraic loops when crossing functions are eval-
uated. We will here adopt a slightly generalized and mod-
ified version of this idea. In our setting, and for each Qi,
we consider the following systems of equations

ẋ = f (t,Px(t),z,d), (11a)
0 = G(z; t,Px(t),d), (11b)
0 = Qi(t, ẋ,Px(t),z,d), (11c)

to be solved when locating a zero-crossing. In contrast to
the simple generalization (10) of the ODE case, where also
the algebraic variables z were interpolated, we here only
interpolate the original states x. The algebraic variables
must be solved for using Equation (11b).

For each Qi the system (11) has the unknowns t, ẋ, and
z. These systems must be solved with high accuracy to
guarantee that we get the correct crossing time and a con-
sistent state for the event iteration. Additionally, solving
the algebraic loops (11b) may be expensive, as we have
previously discussed. However, the benefit of having the
sorting and tearing information available here is that we
do not have to solve for all the algebraic variables y simul-
taneously, rather the remaining can be computed from z.
In Section 3.3 we will discuss further optimizations that
can be applied to efficiently and accurately monitor and
locate events in DAE mode.

3 Dymola DAE mode implementation
In Dymola and the 3DEXPERIENCE platform, DAE
mode has been implemented for the solvers Dassl,
Radau IIa, Sdirk34hw, and Esdirk of different orders.
Thus offering a selection of both multistep and Runge–
Kutta methods. With one of these solvers selected DAE
mode is enabled by the command

Advanced.Define.DAEsolver = true.

In the current section we will present a few key features
of this implementation. Most importantly the accurate and
efficient handling of state events.

3.1 Reusing the simulation code
When initializing and when locating and resolving events
the algebraic loops need to be accurately solved. For effi-
ciency and robustness it is typically beneficial to use all the

optimizations applied when generating ODE mode code,
including e.g. sorting and tearing. This means that the
code generated for ODE mode is needed also when inte-
grating a hybrid system in DAE mode. To keep the simu-
lation code simple and the code duplication to a minimum
our implementation strategy is therefore to reuse the ODE
code to the greatest extent possible.

As seen in Section 2.3 this strategy also allows us to
minimize the size of the integrator equation (8) during
continuous simulation in DAE mode. However, the draw-
back here is that tearing may cause fill-ins, i.e. the reduced
nonlinear system Gi = 0 may be less sparse than the orig-
inal system. In some cases this may even make simula-
tions slower (Braun et al., 2017). On the other hand, it
is concluded by (Magnusson, 2016) that tearing typically
is beneficial for DAEs resulting from hierarchical Model-
ica models. One may additionally gain in efficiency by
taking care to reduce fill-ins when tearing, especially for
large models. To which extent tearing should be used and
how it should be applied is considered out of scope of this
paper.

As discussed in Section 2 the only difference between
ODE and DAE mode continuous simulation is how the
algebraic loops are handled. In ODE mode the algebraic
loops (4) are solved for the algebraic variables z during
the f̂ -evaluations. By small changes in the simulator code
that handles the algebraic loops, these loops can easily be
modified to instead take z as an input from the integrator.
The input can then be used to compute the residuals G(z),
which are returned to the integrator for correction. All
this without any need to change the code generation or the
generated simulation code itself.

3.2 Utilizing the Jacobian structure
So far no changes are required to the generated simulation
code. However, there is one piece of auxiliary information
needed for efficient simulations.

The sparsity pattern of the integrator Jacobian is ana-
lyzed by Dymola when constructing the simulation code.
Knowing all explicit dependencies of the functions f̂ on
the variables x (respectively f on (x;z)), Dymola can
reduce the number of function evaluations required to
construct a numeric Jacobian. Several columns can be
grouped together and computed at the same time by uti-
lizing column independencies.

Since the dependencies change in DAE mode the ODE
mode analysis can not be reused. The DAE Jacobian J is
larger and typically more sparse, cf. (Braun et al., 2017,
Section 2.2). For example, partial explicit dependencies
in each algebraic loop can be taken into account when
constructing the sparsity pattern for the DAE mode Jaco-
bian. In contrast, in ODE mode, where the algebraic loops
are solved, all the iteration variables zi for each loop de-
pend on all of the loop inputs. To summarize, this enables
Dymola to be more aggressive when constructing column
groups in DAE mode.

Moreover, due to the increased size and sparsity of the

DAE Solvers for Large-Scale Hybrid Models

496 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

integrator Jacobian, the benefits of using sparse linear al-
gebra for storing and factorization are even greater. In Dy-
mola multithreaded SuperLU (Li, 2005) is used for this
task and is fully compatible with DAE mode simulations.

3.3 Efficient and accurate event localization
In Section 2.5 we demonstrated that correctly monitoring
and locating crossings can be expensive in DAE mode.
Interpolating the algebraic variables z led to problems and
instead the full equations (11) had to be considered. Addi-
tionally, to avoid having to discard time steps or output
points it is important to evaluate the crossing functions
often during continuous integration, normally after each
time step. Considering that each solution of the equa-
tions may be expensive, the aggregated cost may become
a major bottleneck for DAE mode simulations of hybrid
models. However, there are several optimizations that can
be performed to considerably shorten the time needed for
event localization.

First assume, for the sake of simplicity, that there is
only one crossing function Q and consider how zero cross-
ings are typically localized in ODE mode. It is straight-
forward to rewrite Equation (9) as an equation

0 = Q̂
[

t, f̂ (t,Px(t),d), Px(t), d
]
,

in the single, scalar variable t. This equation can be effi-
ciently solved with an iterative method, e.g. using regula
falsi variants like the safeguard techniques (Eich-Soellner
and Führer, 2008, Section 6.3.2).

The same techniques can be adopted in the DAE case to
efficiently solve the system (11). This results in the nested
systems of equations

0 = Q
[

t, f
(

t,Px(t),G−1(0; t,Px(t),d
)
,d
)
,

Px(t), G−1(0; t,Px(t),d
)
, d

]
.

In the outer equation the time of the crossing t is the only
unknown. Given an approximation of t the polynomial Px

can be evaluated. Using this, the algebraic variables can
be solved for from 0 = G(z). Then ẋ can be computed
and finally the crossing function residual. This nonlinear
equation in t can be solved by applying the same iterative
root finding techniques as in ODE mode.

Indeed, as the algebraic loops are solved also when f̂ is
evaluated the above described procedures for (9) and (11)
are equivalent. This means that the same code can be used
for event localization in ODE and DAE mode. The only
difference is that, in the latter case the simulator code han-
dling the algebraic loops must be told to solve them, and to
do this with high accuracy. After the event is fully handled
the code must again be told to only compute the residuals
of the loops for continuous DAE mode simulation.

Handling several crossing functions at the same time is
neither significantly more expensive, nor more difficult,
cf. Section 2.1. Thus, the above discussed solution tech-
nique for crossing equations is easily generalized to sev-
eral crossing functions.

Finally, and perhaps most importantly, we note that
accurately solving the algebraic loops is only important
when finding the correct crossing time and during the
event iteration. During continuous simulations, and when
no crossing function is close to zero, it is enough to con-
sider the more direct formulation first discussed in Sec-
tion 2.5. That is, we use the integrator approximations of
both x and z and after each time step we evaluate

ẋ = f (t,x,z,d),
c = Q(t, ẋ,x,z,d).

(12)

If any of the variables ci is close to zero we must switch to
the accurate crossing function handling (11) so the correct
crossing time can be located.

With these optimizations Dymola can accurately and
efficiently locate and resolve state events. The algebraic
loops must only be solved to a high accuracy when clos-
ing in on a crossing, when localizing the crossing, and
when resolving the event. Typically, only on the order of
ten solutions per state event is required, cf. Section 4.2. A
remaining problem is how to efficiently handle the situa-
tion where a crossing function is close to zero throughout
most of the simulation, but never crosses.

4 Application Example – Nordic 44
To verify the efficiency of the Dymola DAE mode
implementation we here perform experiments with the
Nordic 44 power grid model (Vanfretti et al., 2017).

4.1 Model description and test cases
Nordic 44 consists of 44 buses, 61 controlled generators,
67 lines, and 43 loads, which model the Nordic grid, see
Figure 3. The model is part of the Open-Instance Power
System Library (OpenIPSL), a Modelica library for power
system dynamic analysis (Baudette et al., 2018).

The DAE representation (6) of Nordic 44, given by the
symbolic transformations in Dymola 2019 FD01, consists
of nx = 1013 states and nG = 47 torn algebraic loops. The
first loop has n1 = 448 iteration variables and the remain-
ing have one each.

We will consider three different fault scenarios. Models
for all of them have been added to the OpenIPSL library.
They can also be found in the supplementary material to
this article and at a dedicated GitHub repository4. The
first two scenarios are reproductions of the experiments
performed by (Vanfretti et al., 2016, Section 3). There,
the second order Runge–Kutta scheme Rkfix2 was used
with the fixed time step h = 0.01 s.

For the first scenario we introduce a line opening be-
tween Bus 5103 and Bus 5304 to occur at t = 2 s. The
voltage for Bus 5304 is plotted in Figure 4, given as a re-
sult of the Dassl DAE mode simulation. To be able to

4GitHub: 2019_Modelica_Conf_DAESolvers4LargeHybridModels,
https://github.com/ALSETLab/2019_Modelica_
Conf_DAESolvers4LargeHybridModels

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 497
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

Figure 3. The Nordic 44 grid model.

Figure 4. Voltage for Bus 5304 during a line fault between
Bus 5103 and Bus 5304 occurring at t = 2 s.

compare CPU-times with the Rkfix2 ODE mode simula-
tions the tolerance 10−6 was chosen for Dassl. With this
tolerance the error estimates of the two solvers are approx-
imately the same.

In the second scenario a bus fault is instead simulated.
At time t = 2 s Bus 3100 short-circuits and connects to the
ground, with very small impedance, for 0.2 s. The simu-
lated bus voltage is plotted in Figure 5. For this model, the
Dassl tolerance 10−4 gives errors comparable to those of
Rkfix2.

The final scenario also considers a bus fault, this time in
Bus 5603. However, the model is also extended to include
an additional generator connected to Bus 5610, see Fig-
ure 6. Compared to the other generators in the Nordic 44
model, a different excitation control system (IEEE Type
AC2A Excitation System) is used. Depending on the gen-
erator field voltage, different control modes are used in
the excitation system to change its outputs. To switch be-
tween the modes state events are required. This extended
model has nx = 1313 states and nG = 65 algebraic loops of
sizes n1 = 498 and n2 = · · · = n65 = 1. Due to the exten-

Figure 5. Voltage for Bus 3100 during a fault in this bus between
t = 2 s and t = 2.2 s.

sion the default Nordic 44 initial conditions do not define
a steady state. To get close to steady state, a simulation is
first performed until t = 60 s. Then, the bus fault occurs
between t = 61.05 s and t = 61.15 s. The simulated gen-
erator field voltage (EFD) is plotted in Figure 7 together
with the unmodified control output (EFD1). For compa-
rable numerical errors the tolerance 5 · 10−5 is used for
Dassl.

4.2 Efficiency experiments
The CPU-times required to simulate the three different
scenarios are listed in Table 1. All simulations in this sec-
tion were run in Dymola 2019 FD01, with default settings
if nothing else is specified, and using Visual Studio 2015
for model compilation. An ordinary Windows 7 (64-bit)
laptop computer (Intel Core i7-6820HQ, 16 GB RAM) has
been used for all experiments, including the reproduction
of the Rkfix2 experiments (h = 0.01 s), reported by (Van-
fretti et al., 2016). As mentioned above, the Dassl toler-
ances have been tuned to give comparable numerical er-
rors between the two solvers.

DAE Solvers for Large-Scale Hybrid Models

498 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

Figure 6. Nordic 44 extended with an extra generator featuring
several control modes. The generator is connected to Bus 5610
and the fault occurs in Bus 5603.

Figure 7. Generator field voltage (EFD) and the unmodi-
fied excitation control output (EFD1) for the extra generator at
Bus 5610.

We observe that several orders of magnitude in simula-
tion speed-up was gained by running Dassl in DAE mode;
the construction of many expensive integrator Jacobians Ĵ
makes the ODE mode times uncompetitive. We remind
the reader that the Nordic 44 model has been specifically
chosen as an example in this paper since it is difficult to
handle efficiently in ODE mode. For most Modelica mod-
els ODE mode is more robust and as efficient. Finally,
comparing with Rkfix2 we conclude that using an explicit
method to altogether avoid integrator Jacobians does not
pay off for these simulations.

All of the power grid faults are triggered at specific

Table 1. CPU-times for the three Nordic 44 fault scenarios.

Fault Rkfix2 Dassl

ODE mode ODE mode DAE mode

Line 587 s 2 015 s 4.21 s
Bus 3100 270 s 7 810 s 33.7 s
Bus 5603 344 s 49 800 s 121 s

times, that is by time events. For the first scenario that is
also the only event. This explains the very fast simulation
time as the large algebraic loops only need to be solved
during initialization and during the event iteration of the
time event. In total each loop is solved only four times.

However, the remaining two scenarios have several
state events that must be located and resolved, namely
14 and 26, respectively. When the fault is triggered in
Bus 3100, the excitation control system inside several of
the generators reach their maximum limit. To prevent
wind-up in the integral controllers their internal states are
reset using state events. Since the desired set points cannot
be reached the controllers continue to wind-up and several
resets are required, cf. Figure 8. Even though reminiscent
of Figure 2, the saw blade shape here represents a cor-
rect solution of the model. This can be easily verified by
ODE mode simulations. Indeed, the fact that the accumu-
lation of events is accurately handled when closing in on
t = 2.1 s confirms the soundness of the event handling ap-
proach proposed by (Eich-Soellner and Führer, 2008) and
used in this paper.

Figure 8. The fault in Bus 3100 triggers saturation in several
generator excitation controllers. State events are issued to reset
the internal controller state, as exemplified here with one of the
generators connected to Bus 7000.

A similar analysis can be made of the third scenario
with the extended Nordic 44 model. But there the state
events instead represent switches between excitation con-
trol modes in the extra generator. Note that the higher
number of state events and the larger algebraic loop are
reflected by the longer simulation time.

As a final experiment we demonstrate the effect of
one of the event handling optimizations presented in Sec-
tion 3.3. Consider again the second scenario with the
fault in Bus 3100. We rerun the Dassl DAE mode simula-
tion, but during the simulation we monitor Equation (11)
rather than Equation (12). This means that the algebraic
loops (4) are solved throughout all of the simulation, not
only when closing in on a zero crossing. This results in
a run time of 197 s to be compared with 33.7 s for the
efficient DAE mode implementation. In the former case
the algebraic loops were solved 918 times, whereas in the

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 499
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

latter case only 143 times.

Finally, we compare with the simulations performed
by (Vanfretti et al., 2016) of equivalent models using the
domain-specific simulation tool PSS/E. On a computer
slightly faster than the one used for this paper the first
two scenarios run in 5 s, respectively 4 s. We conclude
that the Dymola DAE mode performance is competitive
against the industry state of the art. In fact, even faster for
the first scenario. At the same time, looking at the second
scenario, we note that there is room for further efficiency
improvements in the event handling.

5 Additional DAE mode challenges –
an outlook

Other than the accurate handling of events, DAE mode
simulations pose a few additional challenges not experi-
enced to the same extent during ODE mode simulations.

5.1 Robustness and discontinuities
The nonlinear system of equations (8) to be solved inside
the integrator is larger in DAE mode. Solving for both the
states x and the algebraic variables z simultaneously may
cause robustness problems. Compare with ODE mode
where the algebraic equations (4) are solved one at a time,
separate from each other, as part of each f̂ -evaluation. The
nonlinear equation solvers that treat the algebraic loops
may be optimized for this purpose. For example, when
solving algebraic loops with only one iteration variable
even major problems, such as a singular Jacobian, often
do not pose an insurmountable threat. When this singular-
ity becomes part of a large system of equations it becomes
a problem that is much more difficult to handle.

When interpolated values are of interest, as when mon-
itoring events, and the DAE is of index 1, it is recom-
mended by (Brenan et al., 1996, Section 5.4.2) to apply er-
ror control also to the algebraic variables z. However, this
may cause failed simulations when algebraic variables are
discontinuous in time, consider e.g. van der Pol’s equation

ẋ =−z,

0 = x−
(

z3

3
− z
)
,

(13)

(Hairer and Wanner, 1996, Section VI.1). Discontinuities
may also arise when using the noEvent operator.

5.2 ODE-powered DAE mode simulation
With the strategy of using the same generated simulation
code both in ODE and DAE mode an opportunity opens
up to handle these DAE mode specific problems. The idea
is simple and based on the fact that we can readily switch
between the modes: we integrate in DAE mode until a
problem is encountered. Then we switch to ODE mode
and integrate past the problem. When it is deemed fine to
continue in DAE mode, the switch back is made.

Note that switching to ODE mode comes with a con-
siderable cost. In contrast to the event handling strategy

previously discussed, we here want to perform continuous
integration in ODE mode. This requires the construction
of ODE Jacobians Ĵ, which is expensive. An important
goal for any implementation of this idea is probably to
keep the number of ODE Jacobians to a minimum. If ad-
ditionally the rest of the simulation runs smoothly in DAE
mode it may still be considerably more efficient than plain
ODE mode simulation.

We have made a prototype implementation of this idea
using Dassl. The algorithm is simple: when the integrator
gives up in DAE mode we do not stop the simulation, but
rather, switch to ODE mode. While in ODE mode we
allow for one Jacobian computation and simulate with this
until Dassl asks for a second. Instead of computing it, we
switch back to DAE mode and continue simulation until
the integrator gives up again or the simulation terminates.

Example 2. As discussed above, when simulating van der
Pol’s equation (13) in DAE mode it normally fails when
closing in on a discontinuity in z. The error estimate in
this variable becomes large and cannot be made smaller
by shorter time steps. However, using the prototype im-
plementation introduced here we can successfully simu-
late past the discontinuities by temporarily switching to
ODE mode, see Figure 9. For this simulation Dassl re-
quired 132 Jacobian-evaluations in DAE mode and only
two Jacobian-evaluations in ODE mode. 4

Figure 9. DAE mode solution of van der Pol’s equation (13)
using temporary switches to ODE mode to handle the disconti-
nuities in z.

Of course, when simulating the van der Pol’s equa-
tion there is no efficiency benefit in using DAE mode.
However, for a production-level implementation that can
handle large-scale models, the prototype implementation
needs several improvements and tuning. The most impor-
tant question is to decide when to switch, especially when
to switch back to DAE mode. The simple prototype im-
plementation presented above will often switch back too
early. A more careful analysis of the state of the prob-
lem should probably be performed before switching back.
Further questions involve how to best reinitialize the sim-
ulation and with which step size.

DAE Solvers for Large-Scale Hybrid Models

500 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

6 Conclusion
We have discussed and implemented a DAE mode strategy
for hybrid DAEs based on the idea of one common code
generation for ODE and DAE mode. By applying all of
the symbolic transformations and optimizations we get an
index-1 DAE of minimal size. The integrator only needs
to handle the original states and the iteration (tearing) vari-
ables of the algebraic loops. Even though a smaller sys-
tem is typically faster to simulate the tearing algorithm
may cause fill-in making the reduced system more dense.
How to best apply tearing in this context deserves deeper
analysis but is out of scope of this paper.

Our DAE mode approach made it possible to accurately
and efficiently handle state events, with minimal footprint
on the generated code. To localize these events we have
extended from results known in the literature to fit our
Modelica context. Suggestions for optimizing the root
finding were also discussed and implemented.

With these optimizations the algebraic loops only need
to be solved with high accuracy during initialization, when
closing in on a state event, when localizing it, and when
resolving it. Most importantly, solving the loops is not re-
quired when constructing the integrator Jacobian or other
evaluations of the dynamics. Typically, only on the order
of ten solutions per state event are required. We argue that
this is an acceptable cost for models with a moderate num-
ber of state events. For example, compare with the large
number of loop solutions that are required to just construct
the integrator Jacobian in ODE mode, cf. Section 2.2.

Therefore, DAE mode simulations can be vastly more
efficient for models with large algebraic loops. As ex-
emplified by simulations of the Nordic 44 model of the
Nordic power grid, where orders of magnitude in simu-
lation speed were gained. The measured simulation times
are competitive with domain-specific, state-of-the-art sim-
ulation tools that have been optimized for more than three
decades.

The presented DAE mode was made available in Dy-
mola 2019 and 3DEXPERIENCE 2019x for a broad se-
lection of numerical integrators. The implementation also
features detailed DAE mode sparsity pattern analysis and
is fully compatible with Dymola sparse solvers.

Acknowledgments
The authors thank Ricardo Rincon Ballesteros (Universi-
dad Nacional de Colombia) for constructing the third sim-
ulation scenario of the application section specifically for
this publication.

The authors also thank their colleagues for valuable
feedback on the paper drafts.

The work of L. Vanfretti was supported in part by the
Engineering Research Center Program of the National
Science Foundation and the Department of Energy under
Award EEC-1041877, and in part by the CURENT Indus-
try Partnership Program.

References
Maxime Baudette, Marcelo Castro, Tin Rabuzin, Jan Lavenius,

Tetiana Bogodorova, and Luigi Vanfretti. OpenIPSL: Open-
instance power system library — update 1.5 to “iTesla power
systems library (iPSL): A Modelica library for phasor time-
domain simulations”. SoftwareX, 7:34–36, 2018.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solv-
ing large-scale modelica models: New approaches and ex-
perimental results using OpenModelica. In Proceedings of
the 12th International Modelica Conference, pages 557–563.
Linköping University Electronic Press, 2017.

Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial-Value Problems in Differential–
Algebraic Equations. Classics in Applied Mathematics. So-
ciety for Industrial and Applied Mathematics, 1996.

Francesco Casella. Simulation of large-scale models in Model-
ica: State of the art and future perspectives. In Proceedings of
the 11th International Modelica Conference, pages 459–468.
Linköping University Electronic Press, 2015.

Francesco Casella, Andrea Bartolini, Simone Pasquini, and
Luca Bonuglia. Object-oriented modelling and simulation of
large-scale electrical power systems using Modelica: A first
feasibility study. In IECON 2016 – 42nd Annual Conference
of the IEEE Industrial Electronics Society, pages 6298–6304,
2016.

Francois E. Cellier and Ernesto Kofman. Continuous System
Simulation. Springer-Verlag, Berlin, Heidelberg, 2006.

Edda Eich-Soellner and Claus Führer. Numerical methods in
multibody dynamics. Teubner, 2008.

Hilding Elmqvist and Martin Otter. Methods for tearing systems
of equations in object-oriented modeling. ESM’94 European
Simulation Multiconference, pages 326–332, 1994.

Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Par-
allel model execution on many cores. In Proceedings of
the 10th International Modelica Conference, pages 363–370.
Linköping University Electronic Press, 2014.

Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II. Stiff and Differential–Algebraic Problems, vol-
ume 14. Springer-Verlag Berlin Heidelberg, second edition,
1996.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Wood-
ward. SUNDIALS: Suite of nonlinear and differential/alge-
braic equation solvers. ACM Transactions on Mathematical
Software, pages 363–396, 2005.

Filip Jorissen, Michael Wetter, and Lieve Helsen. Simulation
speed analysis and improvements of Modelica models for
building energy simulation. In Proceedings of the 11th Inter-
national Modelica Conference, pages 59–69. Linköping Uni-
versity Electronic Press, 2015.

Xiaoye S. Li. An overview of SuperLU: Algorithms, implemen-
tation, and user interface. ACM Transactions on Mathemati-
cal Software, 31(3):302–325, 2005.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 501
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

Fredrik Magnusson. Numerical and Symbolic Methods for Dy-

namic Optimization. PhD thesis, Department of Automatic
Control, Lund University, 2016.

Hans Olsson, editor. Modelica – A Unified Object-Oriented Lan-
guage For System Modeling: Language Specification. Mod-
elica Association, 2017. Version 3.4.

Hans Olsson, Sven Erik Mattsson, Martin Otter, Andreas Pfeif-
fer, Christoff Bürger, and Dan Henriksson. Model-based em-
bedded control using Rosenbrock integration methods. In
Proceedings of the 12th International Modelica Conference,
pages 517–526. Linköping University Electronic Press, 2017.

Anton Schiela and Hans Olsson. Mixed-mode integration for
real-time simulation. Proceedings of Modelica 2000 Work-
shop, pages 69–75, 2000.

Bernhard Thiele, Martin Otter, and Sven Erik Mattsson. Mod-
ular multi-rate and multi-method real-time simulation. In
Proceedings of the 10th International Modelica Conference,
pages 381–393. Linköping University Electronic Press, 2014.

Luigi Vanfretti, Tin Rabuzin, Maxime Baudette, and Mo-
hammed Murad. iTesla power systems library (iPSL): A
Modelica library for phasor time-domain simulations. Soft-
wareX, 5:84–88, 2016.

Luigi Vanfretti, Svein H. Olsen, V.S. Narasimham Arava,
Giuseppe Laera, Ali Bidadfar, Tin Rabuzin, Sigurd H. Jakob-
sen, Jan Lavenius, Maxime Baudette, and Francisco J.
Gómez-López. An open data repository and a data processing
software toolset of an equivalent Nordic grid model matched
to historical electricity market data. Data in Brief, 11:349–
357, 2017.

DAE Solvers for Large-Scale Hybrid Models

502 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

	Session 4D: Numerical Methods
	DAE Solvers for Large-Scale Hybrid Models

