
Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 441
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS
Schröder, Nikolas and Lenord, Oliver and Lange, Ralph

441

Enhanced Motion Control of a Self-Driving Vehicle Using
Modelica, FMI and ROS

Nikolas Schröder1 Oliver Lenord2 Ralph Lange2

1Institute of Flight Mechanics and Control, University of Stuttgart, Germany,
lrt86824@stud.uni-stuttgart.de

2Robert Bosch GmbH, Germany, {oliver.lenord, ralph.lange}@de.bosch.com

Abstract
This paper presents a new planar wheel model with bore
friction, a control strategy to avoid locking conditions
of floor vehicles with caster wheels, and the new FMI-
Adapter software package, which connects the Functional
Mock-up Interface (FMI) standard with the Robot Oper-
ating System (ROS). It is demonstrated how this tech-
nology enables a convenient model-based control design
workflow. The approach is applied to the ActiveShuttle,
a self-driving vehicle (SDV) for industrial logistics. Af-
ter modeling the wheel friction characteristics of the Ac-
tiveShuttle, a feed forward controller to avoid high friction
torques at the caster wheels in critical operation scenar-
ios is designed and validated by model-in-the-loop sim-
ulations. The control function is exported as Functional
Mock-up Unit (FMU) for co-simulation. With help of
the FMI-Adapter package, the FMU is integrated as ROS
node into the service-oriented robot control architecture,
enhancing the existing motion controller. The functional-
ity and performance is tested and successfully verified on
the ActiveShuttle Dev Kit prototype.
Keywords: Modelica, FMI, ROS, Autonomous Systems,
Robotics, Model-based Control, SDV, Caster Wheels

1 Introduction
A relevant application area of autonomous robotics is the
industrial logistics. In the last years, a number of elabo-
rate algorithms for task scheduling, coordination and path
planning for fleets of self-driving vehicles (SDVs) in such
applications have been proposed (Imlauer et al., 2016;
Pecora et al., 2018). Prerequisite to apply these strate-
gies is a reliable vehicle motion control. Trajectories com-
manded by the planner need to be properly executed by the
drive platform to ensure that the goals of the mission are
met in time and space. Safety and security margins have
to be met, undesired interference due to deviations from
the planned track need to be avoided, and at all times the
vehicle must remain maneuverable.

Model-based control design is a well established ap-
proach to design and apply motion control strategies.
Model-in-the-loop (MiL) simulations allow to validate
and test the control design early on. Optimized controllers
can be designed that take the physical properties and sys-

tem dynamics into account (Thümmel et al., 2005).

In this work a common problem of motion platforms
with differential drive and caster wheels is elaborated. By
applying a model-based control design approach the relia-
bility of the motion controller is significantly improved by
the so called Path Filter introduced in Section 3.

The path filter module is realized as ROS node (see sec-
tion 1.2) to allow the seamless integration into the service
oriented software architecture ROS that is used on the tar-
get application ActiveShuttle DevKit. The widely used de-
velopment environment for model-based control, Matlab
Simulink, does provide a dedicated toolbox for ROS (The
MathWorks). In this paper an alternative approach is ap-
plied aiming to leverage the benefits of the physical mod-
eling language Modelica and the rich Modelica libraries
such as the Modelica Standard Library (MSL) for the de-
sign, verification and validation of the path filter. For this
purpose the free PlanarMechanics library (PML) (Zim-
mer, 2014) is extended and used to build up a plant model
of the Active Shuttle DevKit (see section 2).

In order to enable a generic and efficient control de-
sign process, the integration of the path filter control
function into ROS is facilitated through the Functional
Mock-up Interface (FMI) (Modelica Association Project
"FMI", 2014). Related approaches for such integration
aim at simulation use cases only: The Modelica-ROS
Bridge (Swaminathan) allows to integrate the Modelica
language and corresponding tools with ROS by a TCP/IP-
based bridge, implemented by the ROS_Bridge package
for Modelica and a relay node from the ROS model-
ica_bridge package. A similar mechanism based on Unix
IPC sockets has been proposed to integrate Modelica with
the Gazebo simulator, which is used heavily by the ROS
community to simulate robots in 3D environments (Bar-
daro et al., 2017). The gazebo-fmi project (Traversaro
et al.) provides a plug-in to import FMUs in Gazebo.

With the new FMI-Adapter for ROS introduced in Sec-
tion 4, a very generic mechanism is provided to integrate
control functions into ROS. An export of the path filter
block as FMU (Functional Mock-up Unit) allowed the
straightforward integration into the ROS architecture and
finally its application and test, as described in Section 5,
on the Active Shuttle DevKit.

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

442 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

1.1 Use Case: ActiveShuttle
The ActiveShuttle (AS) is a self driving vehicle (SDV) for
logistic services on the shop floor. A prototypical small
batch series named ActiveShuttle DevKit operates at sev-
eral Bosch plants in Germany. The missions carried out by
the AS are bring and pick-up services of stacked container
boxes on moving dollies.

The routes between the pick-up and drop-off locations
are planned based on a map continuously updated by a si-
multaneous localization and mapping (SLAM) algorithm
(Durrant-Whyte and Bailey, 2006). In order to make the
motion of the SDVs predictable for the workers, the routes
are restricted to be composed of straight segments only.
Turns are restricted to be performed as turns on the spot
after standstill only. Thus, the basic motion patterns are:

• Follow a straight line segment.
• Stop and turn on the spot.
• Stop and move in reverse direction.

The AS DevKit is actuated by a differential drive. Two
caster wheels are positioned in the front and two in the
rear. The chassis design ensures that all six wheels remain
in contact to the ground while crossing sills or other un-
even grounds.

𝐼𝐶𝐶

𝑥

𝑦

+
𝑧

𝑣𝐴𝑆

𝐿𝐷 𝑅𝐷

𝑎𝑠𝑥

𝑂𝑟𝑖𝑔𝑖𝑛

𝜑𝐶,𝐿𝐹

𝜑𝐶,𝑅𝐹

𝜑𝐶,𝑅𝐵
𝜑𝐶,𝐿𝐵

𝜋

𝜋

2
−
𝜋

2

0

𝜑

𝜔𝐴𝑆

𝜔𝑤ℎ𝑒𝑒𝑙,𝑅𝐹

𝑎𝑠𝑦

𝑔𝑎𝑢𝑔𝑒

𝐿𝐹 = 𝐿𝑒𝑓𝑡 𝐹𝑟𝑜𝑛𝑡

𝑅𝐵 = 𝑅𝑖𝑔ℎ𝑡 𝐵𝑎𝑐𝑘

Figure 1. Active Shuttle coordinate system definition, sign con-
vention and nomenclature.

The reference coordinate system of the SDV is fixed to
the middle frame and located in between the driven wheel
axes when standing on flat ground. Given that the vehicle
is operated in the plane only, the motion state of the AS
can be described by equation 1 with the longitudinal ve-
locity vAS and the angular velocity ω perpendicular to the
moving plane.

xxxAS =

(
vAS
ωAS

)
=

(
ASvx,AS

ASωz,AS

)
(1)

During operation it has to be ensured that the above de-
scribed motion patterns can be executed in an arbitrary se-
quence. A critical condition occurs in the transitions from

moving straight to turning and vice versa. In these tran-
sitions the desired motion state of the AS is inconsistent
with the actual motion state of the caster wheels given by
equation 2, with the ωC,i describing the angular velocity
of the i-th caster wheel w.r.t. its spinning axis and ϕC,i
describing the orientation relative to the vehicle w.r.t. the
vertical axis. The caster wheels’ rotational axes are not
aligned with the instantaneous center of curvature (ICC)
of the SDV, located at the center of the reference frame:

xxxC,i =

(
ωC,i
ϕC,i

)
=

(
CAωy,C,i

ASϕC,i

)
(2)

Due to the fact that the vehicle is at standstill when the
turn is initiated, the maximum bore friction torque has to
be overcome in addition to the inertial forces. Projecting
the friction torque at the i-th caster wheel onto the point of
contact of the driven wheels with the radii from the ICC
to the driven wheel rDW and caster wheel rCW , reveals that
due to rDW = gauge/2 < rCW,i a significant share of the
available traction force at the driven wheels is assigned to
the bore torque of the caster wheels:

FDW =
rCW,i

rDW · rtrail
·Tbore (3)

If under full load the required driving torque exceeds the
maximum motor torque, the SDV is not able to follow the
commanded trajectory. Hence, avoiding the risk of this
critical state by reducing the impact of the bore friction
has been identified as significant contribution to make the
operation of SDVs with differential drives more reliable.

1.2 Robot Operating System
The Robot Operating System (ROS) (Quigley et al., 2009)
has been used for the development of the AS DevKit.
ROS can be considered as a framework and middleware
for robotic systems. It also provides a rich set of devel-
opment tools and basic functional capabilities for percep-
tion, control, planning and manipulation. In the last ten
years, a huge open-source community has grown around
this project, which provides numerous software packages
for all aspects of robotics (www.ros.org/browse/).

ROS uses a service-oriented architecture with publish-
subscribe and request-response communication methods.
It even allows to integrate new components dynamically
at run-time. ROS supports most prevalent programming
languages, particularly including C++, Python, Java, C#,
JavaScript, and Ruby. These features facilitate the integra-
tion of new technologies with ROS.

2 Physical Model of the SDV
2.1 Model Requirements and Architecture
Based on the use case described in Section 1.1, the fol-
lowing physical effects have been identified that need to
be represented by a physical model of the SDV:

• Planar motions of the SDV relative to a fixed ground
and related inertial forces.

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 443
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

• Normal forces at the driven and caster wheels con-

sidering the chassis kinematics and mass.
• Limited traction of the driven wheels considering the

maximum wheel slip.
• Bore friction torque at the caster wheels with stiction.
• Limited drive torque defined by the motor character-

istics.

Due to the usage as plant model for MiL simulations with
slow accelerations and limited maneuvers, the following
simplifying assumptions have been applied:

• No real time requirements.
• No inertial torque along the longitudinal axis.
• Neglect the inertial torque along the lateral axis.

Aiming to keep the physical model as simple and generic
as possible the PlanarMechanics Library (PML) (Zim-
mer, 2014) has been chosen as basis for the mechanical
model. The library provides all elements required to de-
scribe a planar multibody system and provides a set of ba-
sic tire models referred to as WheelJoint that have been
adopted as described in Subsection 2.2. To enable a sim-
ple reuse of these basic tire models for the described class
of differential drive vehicles, additional components have
been developed combining the wheel joints with compo-
nents from the Modelica Standard Library (MSL).

In a separate SelfDrivingVehicles library the ex-
tended PLM has bee utilized to build up packages for
specific applications such as the AS DevKit and others.
The corresponding System package contains models that
describe the connections between the driven wheels and
caster wheels as well as a block to calculate the normal
forces of the wheels dependent on the actual orientation.

The Controller package contains models of common
control concepts applicable to any differential drive vehi-
cle such as motion profiles described in vehicle coordi-
nates and their mapping to command values for the left
and right drive as well as implementations of the Path Fil-
ter introduced in Section 3.

This architecture allows to separate the application spe-
cific properties from common concepts of differential
drive vehicles. Models of new applications can be created
with little effort.

2.2 Wheel Models for Differential Drive
Driven Wheel. The wheel itself is modeled with a
SlipBasedWheelJoint (PML) and a 1D-rotational In-
ertia component (MSL). The frame_a connector of the
SlipBasedJoint interfaces the driven wheel subsystem
with the main structure of the vehicle model. The Iner-
tia component is actuated by a Torque signal.

Caster Wheel. Figure 2 shows a schematic illustration
of a swivel caster wheel. The fork contains a bearing
which allows the wheel to swivel relative to the structure
it is mounted on. The bearing is modeled with a Revo-
lute joint (PML). Its frame_a connector interfaces the

𝑡𝑟𝑎𝑖𝑙

swivel axis

fork

Figure 2. Nomenclature of a caster wheel.

subsystem with the main structure of the vehicle model.
A RelAngleSensor (MSL) measures the current caster
wheel orientation and provides it as RealOutput. The
fork is modeled with a FixedTranslation component
(PML) with the length l = trail that connects the Revo-
lute with the wheel joint. As specified in Section 2.1,
the wheel joint of the caster wheel is required to consider
bore friction. Bore friction is a friction torque that coun-
teracts a wheel’s rotational movement around its vertical
axis. As depicted in figure 3, bore torque is denoted with
Tbore and is opposed to the acting torque Tz and the an-
gular velocity ωz. In the following, we first describe a
bore friction characteristic that was proposed by (Zimmer
and Otter, 2010). Thereafter, we propose an alternative
approach that better suits our model requirements and ex-
plain how the IdealWheelJoint is extended to allow its
correct implementation.

𝑥 𝑦

𝑧

𝑣𝑙𝑜𝑛𝑔

𝐹𝑁

𝑙𝐶𝑃

𝑤𝐶𝑃

𝜔𝑤ℎ𝑒𝑒𝑙

𝜔𝑧

𝑇𝑧
𝑇𝑏𝑜𝑟𝑒

𝑃𝑉𝐶𝑃

C𝑜𝑛𝑡𝑎𝑐𝑡 𝑃𝑎𝑡𝑐ℎ

Figure 3. Tire road contact.

Equation 4 shows the proposal by (Zimmer and Otter,
2010).

|Tbore|=


|Tbore,max| ·

|λbore|
λbore,lim

if |ωz| · srep < λbore,lim · |ωwheel | · r
|Tbore,max| else

(4)

Similar to (Rill, 2007), they state that the friction torque
Tbore is proportional to the bore slip λbore. Here, bore slip
describes the ratio between the representative slip velocity
ωz · srep of the tires contact patch and the wheels linear
velocity ωwheel · r.

|λbore|=
|ωz| · srep

|ωwheel | · r
(5)

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

444 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

Within the contact patch, srep is the distance between the
virtual contact point (PVCP) and an infinitesimal element
which is representative for the distances of all infinitesi-
mal elements. It results when integrating over the contact
patch.

srep =
1√
12

√
l2
cp +w2

cp (6)

The bore torque is limited to

|Tbore,max|= FN ·µbore · srep. (7)

Here, µbore denotes the friction coefficient between tire
and road, FN the wheel contact force that acts on PVCP (cf.
figure 3). The limiting parameter in equation 4 is the bore
slip limit λbore,lim > 0 that determines at which bore slip
value the maximum bore torque is reached. Due to the fact
that the actual bore slip λbore is not defined for ωwheel = 0
(cf. equation 5), the condition λbore < λbore,lim in equation
4 is expressed such that division by zero is avoided.

Figure 4 shows a visualization of equation 4. When
|ωz|= |ωwheel |= 0, the acting torque |Tz| has to overcome
the stiction torque |Tbore,stic|= |Tbore,max|. As long as |Tz|<
|Tbore,stic|, the caster wheel is caught in a locking condition
and cannot change its orientation around its vertical axis.

Tbore,stic

Figure 4. Bore friction characteristic (Zimmer and Otter, 2010).

In a first modeling approach equation 4 has been im-
plemented by a regularized s-shaped characteristic as it
is used in the SlipBasedWheelJoint. However, sim-
ulations revealed that a vehicle at standstill actuated by
a constant driving torque that is considerably smaller than
the expected break-off torque |Tbore,stic| at the single caster
wheels, would still start moving over the course of a few
seconds. This undesired effect can be explained by using
a continuous function to avoid the discontinuity which re-
quires |ωz| > 0 rad/s when |Tbore| > 0. Even though the
s-shaped characteristic can be tuned such that ωz is com-
parably small when reaching |Tbore| = Tbore,max, still it is
just a matter of time until the growing share of the acting
forces pointing in the longitudinal direction of the caster
wheels accelerate ωwheel which leads to rapidly decreasing
bore friction.

In order to properly capture the locking behavior and
despite loosing real time capabilites by introducing events,
the model equation 4 was implemented with help of

the hybrid friction formulation used in the MSL Bear-
ingFriction model. However, it was found that this
second approach is still not sufficient. Due to the fact that
the friction characteristic (cf. figure 4) drops quickly from
Tbore,max to zero for ωwheel 6= 0, very small deviations of
∆ ≈ 10−3 rad/s allow the wheel to brake free. Hence, the
behavior of the AS DevKit cannot be replicated with the
bore friction characteristic introduced in equation 4.

In order to avoid the undesired effect described above,
an alternative approach is presented in the following. In
contrast to the previous model the new friction character-
istic, shown in figure 5, has a linear slope w.r.t. ωwheel
near zero, such that small deviations do not take effect.
This leads to the following formulation of the bore torque:

|Tbore|=


(|Tbore,max|− |Tbore,stic|) ·

|λbore|
λbore,lim

+ |Tbore,stic|

if |ωz| · srep < λbore,lim · |ωwheel | · r
|Tbore,max| else

(8)
with Tbore,stic defined as

|Tbore,stic|= max(0, |Tbore,max|− kstic · |ωwheel |). (9)

For kstic→ ∞, equation 8 tends to equation 4.

Tbore,stic

Figure 5. Alternative bore friction characteristic.

In order to implement equation 8, the new model Ide-
alWheelJointBore combines concepts of the Ideal-
WheelJoint (PML) and the BearingFriction (MSL)
model. This allows to represent the locking condition ex-
plicitly as discrete state to assure that Tbore =−Tz as long
as |Tz| < |Tbore,stic| (while ωz = 0). The BearingFric-
tion component is extended with a RealInput to pro-
vide the current wheel contact force FN . As the Bear-
ing Friction component requires the exact torque Tz
that is applied to the wheel, the wheel joint is addition-
ally extended with a rotational SpringDamper compo-
nent (MSL). This allows to dynamically resolve the dis-
tribution of the overall driving torque to the caster wheels
despite a statically over-determined system when multiple
caster wheels are connected to the same frame.

Calculation of the wheel contact forces. This subsys-
tem provides a mathematical model for the calculation of
the wheel contact forces. It is a simplified static approach

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 445
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

that takes the current caster wheel orientations into ac-
count. However, the lateral dynamics of the AS, which
have an influence on the wheel contact forces when accel-
erating or decelerating, are neglected due to rather small
accelerations compared to gravity.

2.3 Verification of the ActiveShuttle Model
The verification of the AS simulation model focusses on
the plausible replication of the observered behavior of the
caster wheels and motion of the vehicle body, especially
w.r.t. to the critical operation scenarios (cf. section 2.1).
This is considerd sufficient in order to prove the path filter
concept in Section 3.2. Therefore the model is not vali-
dated against measurements of the real system.

Turn on the spot. Figure 6 shows the simulation results
for a desired clock-wise (CW) turn on the spot with two
different masses. With mAS = 150 kg, the AS is capable to
initiate the turn and overcome |Tbore,stic|= |Tbore,max| at all
four caster wheels. However, at maximum payload (total
mass mAS = 250 kg), it is caught in a locking condition.
Hence, ωAS remains zero. Since |Tbore,max| is remarkably
higher in the fully loaded case, the drives of the AS are
not strong enough to overcome the stiction torques at the
caster wheels.

Figure 6. CW turn on the spot with mAS = 150 kg (left) and
mAS = 250 kg (right). Dashed lines represent desired motion,
solid lines the simulated motion. All caster wheels with µbore =
0.6, kstic = 1 and λbore,lim = 1.

Flipping caster wheels. Figure 7 shows the simulation
results for a desired transition from driving straight for-
ward to straight backwards. Due to the prior motion seg-
ment, all caster wheel orientations are 0 rad when vAS,des
is reversed to −0.3 m/s. It can be noticed that the caster
wheels are not changing their orientation by half a turn
to π rad instantly. Instead the caster wheel’s orientations
start to flip randomly after about t = 9 s. This reflects the
behavior to be observed at the real vehicle.

3 Design of the Path Filter
In this section a feed-forward controller is described that
ensures that the AS continues its motion in the direction of
the current caster wheel orientations before it is smoothly
transferred in the direction of the desired orientations.

3.1 Control Architecture and Model
Figure 8 depicts the architecture of the path filter. Here,
the index (.)C is representative for one of the four caster

φ
C
,i
ra
d

Figure 7. Random caster wheel flip with mAS = 250 kg. Top:
cf. figure 6. Bottom: Simulated caster wheel orientations. Black
and magenta lines represent back and front caster wheels, resp.
Dashed and solid lines represent right and left side, resp. All
caster wheels with µbore = 0.6, kstic = 1 and λbore,lim = 1.

wheels. Moreover, ωC is equivalent to ωC,wheel .

Get desired

caster wheel state

Get filtered

AS state

Get filtered fil

caster wheel state

param:𝜔𝑚𝑎𝑥

𝒙𝐴𝑆,𝑑𝑒𝑠 𝒙𝐶,𝑑𝑒𝑠 𝒙𝐶,𝑓𝑖𝑙 𝒙𝐴𝑆,𝑓𝑖𝑙

ෝ𝒙𝐶Estimate caster

wheel state

param: 𝑇𝜔 , 𝑇𝜑; init: ෝ𝒙𝐶,𝑖𝑛𝑖𝑡
𝒙𝐶,𝑓𝑖𝑙

Figure 8. Architecture of the path filter feed-forward controller

Get desired caster wheel state The path tracker of the
motion control architecture commands the desired motion
in the AS state representation. However, the path filter al-
gorithm requires this information in the caster wheel state
representation. Therefore, the geometric correlation be-
tween the two state representations is taken into account in
order to provide a transformation. Hence, the subsystem
requires the wheel radius and the position of the swivel
axis of one representative caster wheel as parameters.

Estimate current caster wheel state We assume that
all filtered states can be realized by the AS without en-
countering a locking condition or other external influences
that keep it from reaching the commanded state. Conse-
quently, it is taken for granted that the actual caster wheel
state xxxC is transferred into xxxC, f il with a certain delay. Here,
the delay is caused by the inertia of the AS. Hence, we cal-
culate the estimate x̂xxC with two first order hold elements.
The two time constants Tϕ and Tω can be tuned to match
the AS dynamics.

Get filtered caster wheel state The actual filter algo-
rithm calculates first the deviation between the desired and
estimated caster wheel orientation. Equation 10 makes
use of the modulo function in order to assure that ∆ϕC ∈
[−π;π] rad. This ensures that the AS takes the shortest
path to its desired state.

∆ϕC = mod(ϕC,des− ϕ̂C +π,2π)−π (10)

Equation 11 states the calculation scheme for the filtered
caster wheel orientation. Here, the factor k determines
which proportion of ∆ϕC can be overcome in one calcu-
lation cycle.

ϕC, f il = ϕ̂C + k ·∆ϕC (11)

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

446 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

According to Equation 12, k is defined to grow propor-

tionally with the estimated caster wheel speed ω̂C. Its defi-
nition is based on the idea that the faster a wheel is rolling,
the easier it can be turned (cf. equation 4 and 5).

k = min(1, | ω̂C

ωmax
|) (12)

When the caster wheels are rolling very slowly (ω̂C ≈ 0
rad/s), the AS is forced to start moving in the direction
of its current orientation ϕ̂C. Once the caster wheels
have picked up some speed, their orientations change with
|ωC,z|> 0. In other words, the path filter describes a trajec-
tory in the bore friction characteristics of the caster wheels
that avoids the peak friction torques (cf. figure 5). ωmax
represents the slope of k. Small values reduce the time ∆t
that is necessary to transfer between estimated and desired
state, but at the same time describe a trajectory in the bore
friction characteristic that encounters higher bore torques.
Hence, the choice of ωmax can be seen as a trade-off be-
tween transfer time and effort.

Get filtered AS state This subsystem represents the in-
verse of the first subsystem. It provides a transformation
from the filtered caster wheel state to the filtered AS state.
Here, it is important to provide the parameters of the caster
wheel that was used with the first subsystem.

3.2 Path Filter Verification
In this section, we examine the path filter behavior with
the help of two test setups. In both cases the path fil-
ter is set up with respect to the right front caster wheel
(C,RF) and fed with a desired motion profile that includes
the typical operation scenarios (cf. section 1.1). The "stan-
dalone" test case examines the input output behavior of the
path filter, while the second "MIL" simulation includes the
AS model as system plant and aims to show its impact on
the physical behavior of the AS.

forward - CW

turn on the

spot

forward -

forward

CW turn on

the spot -

forward

forward -

backward

Figure 9. Standalone simulation of the path filter with ωmax =
100 rad/s and Tϕ = Tω = 0.01 s. Dashed lines represent the
desired motion, solid lines the filtered motion. For better scaling,
the single motion scenarios are plotted separately.

The plots of the standalone simulation depicted in
figure 9 show the path filter input (xxxAS,des) and output

(xxxAS, f il). Here, the four motion scenarios are simulated
in one sequence. Between each scenario, the AS is fully
stopped. The plot on the top left reveals that xxxAS,des =
xxxAS, f il for the first motion segment. Here, the desired
caster wheel orientation for driving straight forward is
equal to the orientation that the estimation subsystem was
initialized with (cf. figure 8).

ϕC,RF,des = ϕ̂C,RF,init = 0 (13)

Consequently, ∆ϕC,RF remains zero during the first mo-
tion scenario and the filtered state is set to the desired state
(cf. equation 11 and 10). For all other motion segments,
the behavior of the path filter can be nicely seen. The
commanded state xAS, f il makes the AS continue its prior
motion before it smoothly passes into the desired state.
When changing from driving straight forward to backward
(bottom right plot), an angular velocity component is con-
sciously induced by the path filter and avoids the random
caster wheel flip.

w/o path filter path filter active

Figure 10. MIL simulation for a CW turn on the spot. The AS
was driving straight forward prior to that. Top row: dashed lines
represent the desired motion, solid lines the simulated motion of
the AS model. Bottom row: green lines represent the left drive,
blue lines the right drive. Path filter parameters: cf. figure 9. AS
model parameters: mAS = 250 kg, TLD/RD,max = ±8 Nm, caster
wheels as in figure 6.

Figure 10 shows the MIL simulation results for a CW
turn on the spot. As motivated in Section 3, the path filter
is able to avoid the locking condition that occurs in the
setup without path filter.

4 FMI in ROS Control Architecture
In this section, we first describe relevant mechanisms and
features of ROS, before we provide details on the FMI-
Adapter package. Thereafter, we explain the integration
of the Path Filter FMU with the ROS-based navigation ar-
chitecture of the AS DevKit.

4.1 ROS Concepts
ROS uses a service-oriented architecture based on two
common middleware mechanisms: publish-subscribe and

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 447
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

request-response. Next, we briefly describe relevant ROS
concepts:

Nodes. A software component is named node in ROS.
Each node runs as a separate (Linux) process. Yet, a node
may be instantiated multiple times, e.g., to run the same
motor driver node twice for the two motors of a differ-
ential drive. To be able to distinguish two running node
instances of the same executable, ROS provides a hierar-
chical naming scheme.

Topics. A topic is a typed and named n-to-m communi-
cation channel. Any node may open a publisher on a topic
and publish (i.e. send) a message on it. This message is
delivered to all nodes that have subscribed to that topic.
The type of messages on a topic is defined by the first pub-
lisher. The std_msgs package of ROS provides message
types for all primitive data types (i.e., bool, char, int, float,
etc.). The packages sensor_msgs and geometry_msgs
provide message types for common sensor data (e.g., laser
scans, camera images, inertial measurements) and geo-
metric primitives (e.g., points, poses, transformations), re-
spectively. An interface definition language (IDL) allows
to define application-specific messages types.

Services and actions. Using the same IDL and nam-
ing concept, services implement a typed request-response
mechanism. Actions are a mechanism for long-running
services, where the client may preempt the request.

Topics, services and actions are implemented with TCP/IP
or UDP/IP. Therefore, the nodes can be distributed easily
to different machines.

ROS master. The master is a dedicated process that pro-
vides a registration and lookup for nodes, topics, services
and actions.

Parameter server. The parameter server provides a
shared dictionary of typed key-value pairs, following the
node naming scheme.

Launch files. A launch file is an XML-based specifica-
tion to start a whole (sub-)system consisting of multiple
nodes with corresponding parameterization. The specifi-
cation language also allows to rename topics and services
to connect nodes that have been developed independently.

Time and clock. ROS represents time by two 32 bit val-
ues (seconds and nanoseconds) since the epoch. In normal
operation, the computer’s clock is used as time source.
Yet, ROS also allows a simulated clock with varying rate.

Packages. They are used to logically organize the soft-
ware in ROS. A package may contain one or more nodes,
a third-party library, a set of message types, launch files,
etc. A package may specify dependencies to other pack-
ages, which are used for the build and installation process.

Callbacks and spin thread. Inside a node, each sub-
scription, service server, and action server is associated
with a callback function. Incoming messages are pushed

to a first-in-first-out queue, which is processed sequen-
tially by the spin thread by calling the corresponding call-
back function with the message data. ROS also allows to
multiple callback queues and spin threads inside a node.

Timers. In addition to these communication-related
events, a node may define timers to invoke certain func-
tions periodically through the spin-thread mechanisms.

4.2 FMI-Adapter for ROS
The new fmi_adapter is a ROS package implemented in
C++ for wrapping co-simulation FMUs according to the
FMI standard 2.0 into ROS nodes. The package documen-
tation is provided at wiki.ros.org/fmi_adapter
and the source code can be downloaded at github.
com/boschresearch/fmi_adapter/. An early
version for ROS 2 can be found at github.com/
boschresearch/fmi_adapter_ros2/.

The fmi_adapter package aims at providing the most
important functions of the FMI 2.0 Co-Simulation inter-
face (Modelica Association Project "FMI", 2014) mapped
to ROS concepts/types as depicted in the following table:

FMI ROS
input variable subscription
output variable publisher
state variable no explicit counterpart
parameter initialization parameter server
simulation time ROS clock - offset
communication step-size timer

It is intended neither to implement the whole FMI 2.0 in-
terface nor to provide the rich set of introspection func-
tions as for example FMI Library (JModelica.org, 2012)
or FMI4cpp (SFI Offshore Mechatronics Research Cen-
tre, 2018). For advanced use-cases, ROS developers are
referred to such libraries. Internally, fmi_adapter is based
on the FMI Library, but the specific types are hidden from
the developer.

The fmi_adapter package can be used, both, as a stand-
alone ROS node and as a library.

Node use. The fmi_adapter package provides a ROS
node, which takes the file path of an FMU as parame-
ter fmu_path and creates subscribers and publishers with
message type std_msgs::Float64 for the input and
output variables of the FMU, respectively. Next, it queries
the ROS parameter server with the names of all variables
and parameters of the FMU. For each name being found,
the corresponding variable or rather parameter is initial-
ized with the value being retrieved from the parameter
server. Finally, the initialization mode of the FMU is ex-
ited and the node runs/simulates the FMU with a user-
definable update period according to the ROS clock – un-
til the node is shutdown. The following line gives an ad-
vanced example for invoking this node:
rosrun fmi_adapter node \

_fmu_path:=./TransportDelay.fmu \

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

448 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

_step_size:=0.001 _d:=0.5 \
__name:=nodeB \
/nodeB/u:=/nodeA/angle

In this example, the FMU implements a simple transport
delay with real-valued input u, output y and delay param-
eter d.1 In this invocation, the step-size is set to 1ms,
the delay is set to 0.5s, the node’s name is set to nodeB
and the input x is connected to the topic /nodeA/angle.
Hence, the values of /nodeA/angle will be published on
/nodeB/y with a delay of 0.5s, sampled at 1kHz.

Library use. The fmi_adapter package also provides a
shared library which gives much more control about the
integration of an FMU in a ROS node. Most important,
it allows to decompose complex ROS message types and
to map the individual fields to the primitive-typed input
variables of an FMU. Also, it enables the use of multiple
FMUs inside a ROS node. Finally, it provides some basic
functions to introspect a given FMU, e.g., to query the
variable names depending on their causality.

For this purpose, the fmi_adapter library provides a
C++ class fmi_adapter::FMIAdapter, which wraps a
single FMU whose file path is passed as constructor ar-
gument (cf. Figure 11). On such an instance the default
experiment step-size can be queried (by getDefault-
ExperimentStep), the names of the input variables, out-
put variables, and parameters can be retrieved (by get-
InputVariableNames, etc.), and initial values can be
set (by setInitialValue and initializeFromROS-
Parameters).

The end of the initialization phase is marked using
exitInitializationMode. Now, inputs can be set
programmatically per variable using setInputValue
and the FMU simulation can be advanced with two func-
tions doStep and doStepsUntil. Output values can be
retrieved with getOutputValue. For input values, the
FMIAdapter class allows to pass timestamped values and
thus even to specify a trajectory, where the user can de-
cide whether the input values are interpolated linearly or
considered as a step function. This feature facilitates to
translate between different sampling/sensor rates.

Implementation details. Several subtle details had to
be considered in the mapping between FMI and ROS con-
cepts. The most important is the representation of time.
ROS represents time in seconds and nanoseconds since the
epoch whereas FMI uses a floating-point-based represen-
tation. The latter loses precision for large values. Also,
an FMU may specify a specific start time, typically zero.
Therefore, exitInitializationMode expects a ROS
timestamp. This timestamp is used as offset between the
ROS time and FMU time in all future function calls.

Another subtle difference is that FMI supports various
characters in the variable names that are not allowed in pa-
rameter or topic names in ROS. We introduced a function
rosifyName to replace these characters by underscores.

1ROS does not support physical unit specifications but assumes that
all values are defined in the International System of Units (SI).

Finally, the FMU has to include a binary for Linux. The
export of such FMUs is supported by various commercial
and open-source modeling tools.

4.3 Integration of the Path Filter FMU
Drive commands are represented as TwistStamped mes-
sages (from the geometry_msgs package) in the ROS-
based navigation architecture of the AS DevKit. The
twist.linear.x field represents the lateral velocity and
the twist.angular.z field the rotational velocity. This
is a very common representation in ROS for velocity com-
mands for differential wheeled robots.

In the navigation stack of the AS DevKit these mes-
sages are sent from the path tracker node to the engine
driver node on a topic named /velDes. The former node
implements a controller to follow the given path from the
global path planner; the latter node translates the lateral
and rotational velocity to motor commands for the left
drive motor and right drive motor.

We integrated the Path Filter FMU in a new node
named PathFilter between those two nodes using the
fmi_adapter library. This new node consists of one func-
tion main only, with just 25 lines of code. On receiving a
TwistStamped message on the topic /velDes, it feeds
the Path Filter FMU with the values of twist.linear.x
and twist.angular.z using setInputValue and runs
the FMU up to the current time. Then, it reads the
resulting output values from the FMU, creates a new
TwistStamped message and publishes it on a new topic
/velDesFil.

To integrate the PathFilter node in the existing
architecture, only two lines in the corresponding ROS
launch file had to be changed: A new line for the Path-
Filter node had to be added and the input topic for the
engine driver node had to be changed to /velDesFil.

5 Application and Test
In this section, we describe the application of the ROS ar-
chitecture with the newly integrated PathFilter node to
an AS DevKit. In a series of field tests it was the moti-
vation to gather data that supports the results of the MIL
simulations in Section 3.2 and further verifies that the path
filter reaches its objectives (cf. section 3).

5.1 Test Setup
In contrast to the adaption of the launch file that was de-
scribed in Section 4.3, we operated the Active Shuttle
DevKit in manual mode. Here, the PathTracker node
is deactivated and the desired motion is published to the
/velDes topic by a node that is interfaced with a joy-
stick. The desired motion profile included the following
segments:
• straight forward → stop → CW turn on the spot →

stop → straight forward → stop → straight back-
wards→ stop→ straight forward

The profile was driven several times with different path fil-
ter parameter variations including one reference case with-

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 449
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

Figure 11. Architecture diagram from fmi_adapter package, illustrating library use

out path filter. The AS DevKit was loaded with 150 kg
which sums up to an overall weight of mAS ≈ 200 kg. The
relevant topics /velDes , /velDesFil and /engine-
datawere recorded with the rosbag tool. The latter topic
holds the messages with the measured motor speeds and
currents. The measured AS state xxxAS,m results from nLD,m,
nRD,m and the AS kinematics. In order to verify that the
path filter is solving the operational issue of randomly flip-
ping caster wheels, xxxAS,m is examined in combination with
video recordings.

5.2 Test Results
Figure 12 shows a detailed view on the CW turn on the
spot. Here, the measured motor currents of a reference
case with no path filter are compared with a filtered case.

The time span where the motor currents of the reference
case have reached a peak value of ±≈ 18 A can be inter-
preted as the moment when the caster wheels are abruptly
changing into their desired states xxxC,i,des. Here, the coun-
teracting bore torque is abruptly vanishing and a signif-
icant drop in the motor currents can be observed. This
drop results in an oscillation of the motor currents which
lasts for a couple of seconds until it is damped.

The intended effect of the path filter can be nicely seen
between t = 15.4 s and t = 16 s. The motor currents
necessary to induce the turn on the spot are considerably
reduced compared to the reference case. The path filter
forces the AS to continue driving in the direction of the
current caster wheel orientations first. Hence, the motor
currents are first rising with a positive slope before the
right motor current is dropping below zero. This acceler-
ates the caster wheel speeds before the turn is initiated and
reduces the bore friction. Moreover, we observe that the
drop in the motor currents and the resulting oscillation are
significantly mitigated.

Figure 13 shows a detailed view of the change from
driving backward to forward. As it was elaborated in Sec-
tion 3 the path filter intends to avoid the random caster
wheel flip. We observe that the path filter forces the AS
to keep driving backwards for a split of a second before it
consciously induces an angular velocity component which
triggers the orientation change of the caster wheels. Even

Figure 12. Measured motor currents for initiating a CW turn on
the spot. The AS (mAS ≈ 200 kg) was driving forward prior to
that. Dashed lines represent the results w/o path filter, solid lines
the results with ωmax = 100 rad/s and Tϕ = Tω = 0.01 s. Red and
blue lines represent the left and right drive, resp.

though the actual caster wheel orientations can not be
measured we assume that the strategy works out. xxxAS,m is
following xxxAS, f il and xxxAS,m is significantly different from
zero between t = 46 s and t = 49 s. Our assumption was
verified through video recordings which clearly show that
the caster wheels are turning instantaneously after the mo-
tion is started.

Figure 13. Desired, filtered and measured AS state for chang-
ing the driving direction. The AS was driving backwards prior
to that. Dashed lines represent the desired motion, solid lines
the filtered and measured motion. Path filter parameters and AS
mass as in figure 12.

6 Conclusions and Outlook
In this paper a new model for wheels with bore friction
has been presented. This model is suitable to describe
the impact of bore stiction and allows to replicate criti-

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

450 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

cal locking conditions of differential drive vehicles with
caster wheels. Based on the developed wheel model a
vehicle model of the AS DevKit has been developed and
used to design and validate the so-called Path Filter.

Using the new FMI-Adapter the PathFilter has been
successfully integrated into a ROS control architecture
and deployed to the AS DevKit. This way it has been
demonstrated that FMI is a viable and attractive approach
for an integrated end-to-end workflow from model-based
control design to software integration for robotic applica-
tions and service oriented architectures. The open source
fmi_adapter package enables users to wrap an FMU into a
ROS node without deeper understanding of the FMI inter-
nals. The development process is drastically reduced with
respect to time, effort and complexity.

The Path Filter has a significant positive impact on the
handling qualities of the AS. It significantly reduces the
effort necessary to perform movements that require the
caster wheels to be turned on the spot. Moreover, it damps
oscillations in the motor currents caused by the abrupt re-
lease of the counteracting bore torque. The path filter re-
duces the jerk which increases the durability of hardware
components, eases the handling of fragile goods and im-
proves the stability of shaky loads. Most important, the
risk of getting stuck in a lock condition is drastically re-
duced. The Path Filter has been designed as self-contained
function that can be retrofitted into existing control archi-
tecture between motion planer and motion controller.

The demonstrated application uses a micro processor as
target and the deployed software was not subject to certi-
fied development processes. In the future work it needs to
be ensured that the code within an FMU satisfies require-
ments of safety critical software and is optimized for real
time applications. The current efforts within the publicly
funded European project EMPHYSIS (ITEA3, 2017), de-
veloping the FMI for embedded systems (eFMI) standard,
is addressing these challenges.

The Path Filter could be improved with respect to cali-
bration effort and ressource demand by reducing the num-
ber of tuning parameters and the number of states. The
estimation of the caster wheel angle using two first order
holds could be replaced by an estimator based on the mea-
sured velocities of the driven wheels.

The plant model of the SDV could be enhanced to con-
sider the impact of the currently neglected inertial forces.

Further studies shall reveal which constraints could be
incorprated by the motion planner to determine trajecto-
ries that are compliant with the orientation of the caster
wheels, which would allow to dispense the Path Filter.

References
G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Using

Modelica for advanced Multi-Body modelling in 3D graph-
ical robotic simulators. In Proc. of the 12th Int’l Modelica
Conference, Prague, Czech Republic, May 2017.

H. Durrant-Whyte and T. Bailey. Simultaneous Localization and

Mapping (SLAM): Part I/II. IEEE Robotics Automation Mag-
azine, 13(2/3):99–110/108–117, Jun/Aug 2006.

S. Imlauer, C. Mühlbacher, G. Steinbauer, S. Gspandl, and
M. Reip. Hierarchical Planning with Traffic Zones for a Team
of Industrial Transport Robots. In Proc. of 4th Workshop on
Distributed and Multi-Agent Planning (DMAP), pages 57–
65, London, UK, Jun 2016.

ITEA3. EMPHYSIS – Embedded systems with physical models
in the production code software, 2017. Retrieved 13 Nov
2018 from itea3.org/project/emphysis.html.

JModelica.org. FMI Library, 2012. Retrieved 3 Jul 2018 from
jmodelica.org.

Modelica Association Project "FMI". Functional Mock-up In-
terface for Model Exchange and Co-Simulation – Version 2.0,
Jul 2014.

F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov. A
Loosely-Coupled Approach for Multi-Robot Coordination,
Motion Planning and Control. In Proc. of 28th ICAPS, Delft,
The Netherlands, Jun 2018.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source
Robot Operating System. In Proc. of ICRA Workshop on
Open Source Robotics, Kobe, Japan, May 2009.

G. Rill. Simulation von Kraftfahrzeugen. Vieweg Verlag, Re-
gensburg, Germany, 2007.

SFI Offshore Mechatronics Research Centre. FMI4cpp,
2018. Retrieved 25 Oct 2018 from github.com/
SFI-Mechatronics/FMI4cpp/.

S. Swaminathan. Modelica-ROS Bridge. Retrieved 14 Jan 2019
from github.com/ModROS.

The MathWorks. Robot Operating System (ROS) Support from
Robotics System Toolbox. Retrieved 23 Oct 2018 from www.
mathworks.com.

M. Thümmel, G. Looye, M. Kurze, M. Otter, and J. Bals. Non-
linear Inverse Models for Control. In G. Schmitz, editor,
Proc. of the 4th Int’l Modelica Conference, pages 267–279,
Hamburg, Germany, March 2005.

S. Traversaro, P. Ramadoss, and L. Tricerri. gazebo-fmi. Re-
trieved 14 Jan 2019 from github.com/robotology/
gazebo-fmi.

D. Zimmer. A free Modelica library for planar mechanical multi-
body systems, 2014. Retrieved 23 Oct 2018 from github.
com/dzimmer/PlanarMechanics.

D. Zimmer and M. Otter. Real-time models for wheels and tyres
in an object-oriented modelling framework. Vehicle System
Dynamics, 2010.

	Session 4B: Automotive 2
	Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

