
Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 393
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

Model visualization for e-learning, Kidney simulator for medical students
Šilar, Jan and Ježek, Filip and Mládek, Arnošt and Polák, David and Kofránek, Jiří

393

Model visualization for e-learning
Kidney simulator for medical students

	 Jan Šilar1	 Filip Ježek1,2	 Arnošt Mládek1	 David Polák1	 Jiří Kofránek1

1Institute of Pathological physiology, First Faculty of Medicine, Charles University, Prague, Czech republic,
{jan.silar, filip.jezek, arnost.mladek, david.polak, jiri.kofranek}@lf1.cuni.cz

2Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Abstract
The present paper introduces a recently developed tool
for building web-based simulators called Bodylight.js.
Simulators are applications composed of a mathematical
model and a graphical user interface that allows the user
to easily interact with the model and visualize the results.
A modelica model is first exported to FMI with sources,
transcompiled into JavaScript and WebAssembly and
connected to a GUI, comprised of graphical animations
created in Adobe Animate and elements that allow to
control the input model such as sliders, buttons, etc.

A physiological e-learning application explaining
the function of a nephron – the basic functional unit of
kidneys – is presented later as a use-case. The model was
developed primarily as a teaching aid for use in courses
of physiology for medical students at our university.

Purpose of this work is to describe the new
Bodylight.js tool and to prove its usability by building
the medium-complex e-learning kidney simulator. The
simulator helps medical students to better understand
renal function at the very basic level.
Keywords: 	 Modelica, JavaScript, WebAssembly,
web technologies, physiology, kidney, e-learning

1 Introduction
Mathematical models are powerful tools for gaining
insight into the systems under study. It is sometimes
feasible to experiment with a human body directly. For
example a man can drink a lot of water and, due to the
enhanced urine production, has to urinate sooner. But
this is just an outer behavior of the system. It is not so
easy to grasp the underlying mechanisms: how was
the swallowed water absorbed into the intestine blood
vessels? Why the blood did not get diluted? Further,
how is the primary urine produced? Here models and
simulation applications may help us to comprehend the
underlying mechanisms. Functional models are already
being used in medical education (Kofranek et al, 2011)
(namely in physiology and pathophysiology). But we
believe that the benefits are still widely underestimated
and that illustrative models should be used regularly
in lectures and practical classes.

Our ultimate goal is to produce simulation
applications for teaching physiology that both look and

behave like the simulated system so that they are as
much understandable as possible. We need a modeling
tool, graphical animation tool and tool to connect both
the model and the animation together.

In physiological modeling, a number of modeling
tools are used – e.g. Mathworks Matlab/Simulink,
CellML, JSim, OpenModelica etc – and each one requires
installation and at least some familiarization with the tool
to be able to run the models. Some tools even require a
(very expensive) commercial license. To overcome this,
a standalone simulator is required, preferably without
the need of installing anything. Web-based technologies
do offer a convenient solution (Kofránek et al, 2009)
and allow the simulator applications to be accessed as
simply as the rest of the contemporary world-wide web.

However, development of a simulator is often
a demanding task. Some effort has been put into
development of web-based simulators, e.g. the
proprietary Modelica.university (Tiller and Winkler,
2017) or the Bodylight framework (Ježek et al, 2013),
based on the discontinued (Smith, 2015) Microsoft
Silverlight.

Some researchers (e.g. (Christ and Thews, 2016;
Kulhánek et al, 2013; Zhang, 2001) and a number of
others) aimed at a client-server simulation. Such solution
relies on a server which performs the computation and
client only receives the resulting data. Based on user
input, the client asks for a new set of data. The second
possible approach is fully client-side, in which the
client is responsible for both the computation and user
interaction see Figure 1.

The client-side concept is initially more demanding
task, as the whole calculation has to be performed in
a web-enabled language, i.e. JavaScript, it however
offers some advantages. Especially for educational
purposes, the server does not have to bear entire
classroom’s computational load at the same time.
The requirement of a smooth visualization, including
continuous simulation graphing, movement of animated
components and prompt interaction therefore prefers the
client-side approach. Although the usage of a modern
cloud technologies with scalable computational power
and decentralized geographical location would reduce
the client-server lag to satisfying levels, the price of
the infrastructure is substantially higher and scales up

Model visualization for e-learning, Kidney simulator for medical students

394 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

with any new user. Of course, very computationally
demanding simulators are not meant to be client-
simulated, but those are out of scope of the discussed
physiological models.

As of 2018, no open web-based simulator platform
which is capable of running complex equation-based
models exists. Our aim is to develop a client-side
simulator technology, based on the chosen Modelica
language and a simulator-producing toolchain. This
technology has been named Bodylight.js

2 Methods
Our group (Kofranek’s group) develops medical
e-learning simulators since 1996. We have focused on
web-based simulators since 2012 (Ježek et al, 2012).
After designing a set of simulators (a sample is shown
on Figure 2), based on the custom Bodylight framework,
built on a Microsoft Silverlight web technology (Ježek
et al, 2013), the core Silverlight platform has been
discontinued (Smith, 2015). Lessons learned – do not
rely on proprietary platforms.

2.1 The Bodylight.js build process
The effort has been recently restarted, and consequently
the approach has been based on open standards:

•	 Modelica language for modeling (Fritzson and
Engelson, 1998)

•	 Functional Mockup Interface for model simulation
•	 HTML5 + JavaScript for model presentation and

interaction
Driven by industrial needs to share and co-simulate
models of various languages and tools, the Functional
Mockup Interface (FMI) (Blochwitz et al, 2012) emerged
as an open standard. Developed and maintained by the
Modelica association (Lund, Sweden), it quickly gained
wide support from tool vendors.

As of September 2018, 110 tools are capable of either
FMI export, import or both (Modelica Association,
2017).

In first stage of our work-flow the model is exported
as FMU for Co-simulation version 2.0 including source
code. The advantage of using FMI is the standardization,
which ensures further compatibility of export from
multiple tools and their future versions.

The task is to get the FMU into JavaScript, so
it can run in the browser. As shown in Figure 3,
the FMU can contain source code of both the model
and the solver. The C code could be then translated
to JavaScript using Emscripten (Zakai, 2011). The
Emscripten translation offers two targets: ASM.JS and
WebAssembly (or WASM). Asm.js is a turing-complete
subset of the JavaScript language, used as a compilation
target. WebAssembly is currently a more effective
binary version of Asm.js, but it is designed to “Define

Figure 1. Client server and Client only architectures.

Figure 2. The simulator of simple circulation, built using
the Silverlight technology (Tribula et al, 2013).

Figure 3. Content of FMU can vary, depending on usage
(simplified).

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 395
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

In fact, the simulator integration could be simplified
to a bare minimum – all inputs are already known and
prepared, thus it is only necessary to interconnect the
controls and graphical components with the model inputs
and outputs. And that could be mostly automatized.
Therefore, to make the simulator development more
efficient, a special helper composer tool has been
developed.

The composer allows to upload the FMU, manage the
model settings, upload animations and other graphical
components, insert graphs and HTML controls, and
interconnect it all together and then export a standalone
HTML5 application.

3 Applications
The Simple Circulation simulator implemented earlier
in Silverlight (Figure 2) was already reimplemented1
using the new technology.

Another new simulator on iron regulation2 was
implemented, see Figure 6. Here, we have implemented
a mathematical model of systemic iron regulation
based on the work of Enculescu et al. (Enculescu
et al, 2017). The model incorporates dynamics of
organ iron pools as well as regulation by the hepcidin/
ferroportin system. The model was calibrated and
validated with time-resolved measurements of iron
responses in mice challenged with dietary iron overload
and/or inflammation. The model demonstrates that
inflammation mainly reduces the amount of iron in
the bloodstream by reducing intracellular ferroportin
transcription, and not by hepcidin-dependent ferroportin
protein destabilization. In contrast, ferroportin
regulation by hepcidin is the predominant mechanism
of iron homeostasis in response to changing iron diets
for a big range of dietary iron contents.

3.1 Nephron simulator
A nephron simulator3 was implemented recently.
Nephron is the structural and functional unit of the

1 at www.physiome.cz/apps/SimpleCirculation/
2 at www.physiome.cz/apps/IronMetabolism
3 at www.physiome.cz/apps/Nephron/

a portable, size- and load-time-efficient binary format
to serve as a compilation target which can be compiled
to execute at native speed by taking advantage of
common hardware capabilities available on a wide
range of platforms, including mobile and IoT”
(WebAssembly High-Level Goals – WebAssembly,
n.d.). The model compilation to a binary format
effectively obfuscates the model code, so this method
is suitable for proprietary or undisclosable models as
well. The translated FMU code is then linked to model
controls (such as start, stop, parameters input etc),
graphs and animated components.

For educational purposes especially in non-technical
fields, the value of a graph alone is usually not enough.
Simulators should provide rich content, including
images and animations controlled by the model’s
output. Thus, the animation components are designed
and animated in Adobe Animate and then exported as an
HTML component, exposing their animation time-lines
as Javascript functions, which are linked to the model.
The animations time-lines could be nested, so it is
possible to animate e.g. width and height of a component
independently, but the animations have to be stackable,
that is they are not truly independent. The whole
web-simulator build process is visualised in Figure 4.

2.2 The Bodylight.js Composer
As illustrated by Figure 5, the development of an
educational simulator is a multi-disciplinary task
(Kofránek et al, 2009):

•	 The domain expert (teacher) sets the simulator
objectives and designs a simulation scenario

•	 The modeler develops and implements
the mathematical model

•	 The graphic designer draws and animates
the components and prepares the layout

•	 The integrator composes the simulator together.

Figure 4. FMU build process. The FMU is exported and
the packaged sources are translated into the JavaScript to
enable web-simulation.

Figure 5. Simulator design and build process scheme.

Model visualization for e-learning, Kidney simulator for medical students

396 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Anatomically a kidney is composed of two layers:
an outer layer named cortex and an inner layer called
medulla. The medulla contains multiple cone-shaped
lobes, known as medullary pyramids. The urine drains
into the renal pelvis, which is the initial part of the
ureter. The hilum of the kidney is the site of entry and
exit for renal artery, renal vein, and ureter.

There are two types of nephrons (Figure 7) differing
in length and urine concentration capacity: short
cortical (70 – 80%) and long juxtamedullary (20 – 30%)
nephrons, in total there is about one million nephrons
in each kidney. The nephrons begin in the cortex; the
tubules descend down to the medulla, then make a
U-turn and return to the cortex before draining into
the collecting duct. The collecting ducts then descend
towards the renal pelvis and empty the final urine into
the ureter.
Each nephron has the following parts (Figure 8):

1.	 Glomerulus and Bowman’s capsule (Figure 9).
2.	 Proximal tubule.
3.	 Loop of Henle (descending and ascending parts).
4.	 Distal convoluted tubule.
5.	 Collecting duct.

Throughout the length of the nephron, peritubular
capillaries lie adjacent to all segments of the tubule

kidney. In the following text we explain some of
the kidney’s main functions and present the model
behind the simulation application. Finally we present
the application itself, which is composed of several
consecutive simulation screens, and discuss how it is
used to clarify physiological processes.

3.1.1 Basic kidney functions

The urinary system is comprised of two kidneys
connected via ureters to the urinary bladder, and an
urethra. The kidneys produce urine containing excess
water, electrolytes and body waste products. The urine
then flows down the ureter into the bladder where it
is temporarily stored. The bladder is then reflexively
emptied via the urethra.

The kidney has many important homeostatic,
hormonal, and metabolic functions making its (patho)
physiology very complex and difficult for medical
students to comprehend. To mention several of these:

1.	 The water balance and electrolyte homeostasis.
2.	 The regulation of acid-base balance.
3.	 Excretion of metabolic waste products, especially

the toxic nitrogenous compounds and xenobiotics.
4.	 Production of renin enzyme for arterial blood

pressure control and erythropoietin, which
stimulates red blood cell production in the red
bone marrow.

5.	 Conversion of vitamin D into an active form for
the regulation of calcium balance.

Figure 6. Iron regulation. The present screen shows the
basic iron metabolism in duodenal cells. The dashed
lines symbolize iron transfer between cell compartments
and blood stream. It is possible to regulate food iron
income as well as blood transfusion and loss. Further it is
possible to initiate an inflammation process via injection of
lipopolysacharide (LPS) into to blood vessels.

Figure 7. Kidney anatomy

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 397
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

small solutes passes into the Bowman’s capsule. The size
of the filtration slits restricts the large molecules from
being filtered out the plasma (such as protein albumin/
globuline) and cells (such as erytrocytes or leucocytes).

The process of the glomerular filtration is often
called renal ultrafiltration. The force of the hydrostatic
pressure in the glomerulus (the force of the pressure
exerted from the pressure of the blood vessel itself)
is the driving force that pushes the filtrate out of the
capillaries.

The osmotic pressure (the pulling force exerted by
the albumins) works against the greater force of the
hydrostatic pressure, and the difference between the
two determines the effective filtration pressure and the
glomerular filtration rate (GFR), along with a few other
factors.

GFR is physiologically kept constant for a wide
interval of arterial pressure. The hydrostatic pressure
can also be controlled by widening (vasodilation) or
narrowing (vasoconstriction) the afferent and efferent
arterioles.. The glomerulus model was implemented
from scratch. It utilizes the hydraulic domain (connector
composed of pressure and flow VolumeFlowRate
variables) of PhysioLibrary. The model is analogy of
electrical voltage divider. The model represents all the
glomeruli contained in pair of kidneys, e.g. the flows
in the model are summed up over all nephrons.

Resistance of the glomerular capillary wall
is modeled with the filterResistance component.
Afferent and efferent arterioles are modelled with the
afferentResistance and efferentResistance components.
The two resistances are variable and affect the pressure
on input of filterResistance and thus flow through it
(which is GFR). The osmotic pressure is included simply
by adding two extra pressure columns (osmoticBlood
and osmoticUrine) around filterResistance component.

and help to maintain the dynamic stationary state.
The capillaries originate from the efferent glomerular
arteriole and remove the water and solutes excreted by
the tubules.

The present application focuses on the urine production in
terms of water and sodium ion (Na+) only. Prospectively
we intend to extend the model by including more solutes
and kidney processes in future.

3.1.2 Physiology and models

There are two separate models used in the application.
One for the glomerulus simulator (Figure 10) and one
for the other (nephron tubules) simulators (Figure 11).
Both glomerulus and nephron tubule models utilize the
PhysioLibrary (Matejak and Kofranek, 2015), which
was also developed within our group. The models are
considered to be in the steady state and the model does
not take temporal evolution into account.

Glomerulus

Blood enters the afferent arteriole and flows into the
glomerular cluster of intertwined capillaries buried
within the Bowman’s capsule. The blood leaves the
glomerulus through the efferent arteriole.

The wall of the glomerular capillaries is penetrated
with many microscopic slits through which the fluid and

Figure 8. Nephron

Figure 10. Glomerulus model, analogy of electrical voltage
divider: afferent and efferent resistances control pressure
on the left connector of filter resistance. Osmotic pressure
is modeled by pressure columns.

Figure 9. Glomerulus

Model visualization for e-learning, Kidney simulator for medical students

398 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Tubules

The nephron tubule model utilizes the osmotic
domain (connector composed of Concentration and
flow VolumeFlowRate variables) of the PhysioLibrary. It
is implemented according to (Hoppensteadt and Peskin,
1992), but there are several changes and extensions.
It is basically a system of ODE in a space coordinate.
This coordinate is manually discretized so that fields
are replaced with arrays and derivatives with forward
differences. The model is composed of several tubules
components/classes. All tubule models extend from
common general tubule with this equations:

where Q is filtrate volumetric flow [m3s-1] through the
tubule, o is osmolarity of the filtrate [mOsm L-1], fH2O
water volumetric flow through the tubule wall in the
outer direction per unit length [m2s-1] and fNa similarly
the Na molar flow through the tubule wall in the outer
direction per unit length.[mmol s-1m-1]. The particular
tubules differ with the equations for fH2O and fNa according
to the tubule function.

Proximal tubule

The proximal tubule is the major resorptive segment
of the nephron and accounts for resorption of nearly
two-thirds of all filtered water and sodium. The water
is reabsorbed along with all the dissolved sodium, so
that the filtrate osmolarity is preserved. The additional
equations in this component are

where kH2O is chosen so that ⅔ of water is reabsorbed in
the proximal tubule under the normal GFR. oin is input
osmolarity of the proximal tubule.

Figure 11. Nephron model is composed of UnlimitedVolume
source as a simplified glomerulus and a sequence of tubules
(proximal tubule, descending loop of Henle, ascending
loop of Henle, distal tubule, collecting duct)

Descending Loop of Henle

The descending Loop of Henle displays a high
permeability to water but is virtually impermeable for
sodium. The osmolarity of medulla surrounding the
tubule rises from 300 near the cortical layer down to
1200 mOsm/l deep in medullary layer. The water leaves
passively the tubule so that the osmolarity in the tubule
equalizes with osmolarity of the ambient medulla.
Approximately 20% of water is reabsorbed here.
Additional equations are

where omed is an array. Its value rises linearly with the
index to model the medulla osmolarity gradient.

Ascending Loop of Henle

The ascending loop of Henle accounts for resorption
of nearly a quarter of the filtered load of sodium. It is
virtually impermeable to water. Given the large amount
of solute resorption that occurs in the absence of water
resorption, the tubular fluid becomes progressively
dilute as it travels through the ascending loop. This
feature is why this segment is frequently referred to as
the “Diluting Segment” of the nephron. The resorption
is active and consumes energy in form of ATP. This
enables lower osmolarity in the duct compared to
surrounding medula, but the difference can’t be higher
than 200 mOsm/l. The osmolarity drops down to 100
mOsm/l in the duct. The equations are

where kNa is chosen to meet the osmolarity 100
mOsm/L at the outflow of the loop of Henle under
normal condition. The limiter function ensures that the
osmolarity difference does not exceed 200 mOsm/L
namely at decreased GFR.

Distal tubule and collecting duct
The distal tubule and the collecting ducts represent the
final functional segment of the nephron after which any
remaining tubular fluid is excreted as the final urine. By
this segment, the vast majority of solutes and water is
resorbed and thus the late distal tubule and collecting
ducts are responsible only for a small fraction of total
resorption. However, this represents the major locus of
regulated tubular resorption and given the enormous
quantities of glomerular filtration that occur per minute,
even small changes in resorption rates at this segment
can have enormous impacts on the composition of the
body’s extracellular fluid.

The distal tubules of several nephrons empties into
one shared collecting duct.

The distal tubule and collecting duct system is under

(1)

(2)

(3)

(4)

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 399
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

the tubules with the half-circle measures and turbines,
flow through the vessel walls with width of the dashed
moving arrows. This visualized sensors are used also in
all other parts of the application.

Student can change resistance of afferent and efferent
arteriole and thus control the hydrostatic pressure in
glomerular capillaries and GFR. Mean arterial pressure
(pressure at afferent arteriole entry) may be also
modified. The filtration resistance may be controlled as
well to simulate certain renal pathologies. The goal is
to explain how the glomerulus maintains constant GFR
despite changing arterial pressure by means of changing
afferent and efferent arteriole resistance.

Proximal tubule

Proximal tubule is shown on Figure 13. The number
inside the tubule depicts the osmolarity of the filtrate.
GFR may be controlled. Decrease of flow may be
observed on the flow measures whereas the osmolarity
is maintained.

Loop of Henle

Loop of Henle is shown on Figure 14. Ascending and
descending tubules of Loop of henle are together on
one screen. Student can control the GFR and observe
changes in reabsorption rates, flow and osmolarity. The
sodium transport limiter is applied in the ascending
section so the osmolarity never drops below 100mOsm/l
at the outflow.

the control of antidiuretic hormone (ADH). When ADH
is present, the tubules becomes permeable to water.
The high osmotic pressure in the medulla (generated
by the counter-current multiplier system/loop of Henle)
then passively draws out water from the tubules to
medulla and blood vessels drain it away. Than the final
urine osmolarity is about 1200 mOsm/l and as much as
possible water is retained in body.

With no ADH, tubule walls are impermeable to
water, no water is reabsorbed. The urine osmolarity is
100 mOsm/l (as it leaves ascending loop of Henle) and
the body loses water rapidly.

The equations of both distal tubule and collecting
duct are

Where ADH ϵ (0,1) and qH2O is constant.

3.1.3 The simulators

The simulator is composed of several screens, each for a
section of the nephron. All screens contain besides others
sliders to control some model parameters and plots
visualising usually flow and osmolarity along tubules.
But these are not shown on the following screenshots.

Glomerulus
Figure 12 depicts the glomerulus screen. Pressures are
depicted with the liquid-column gauge, flows through

Figure 12. Top: Bowman’s capsule (yellow), afferent and
efferent arterioles. Red arrows symbolize the blood flow
direction, yellow arrow represents urine flow direction. For
each part of glomerulus both the hydrostatic and osmotic
pressure is calculated. The difference between the total
effective pressure in capillaries and in the Bowman’s
capsule drives the net filtration flow.

Figure 13. Diagram of the proximal loop. The red arrows
show the direction of the urine flow. Along the proximal
tubule sodium ions and water molecules are reabsorbed
across the cellular boundary.

(4)

(5)

Model visualization for e-learning, Kidney simulator for medical students

400 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Distal tubule and collecting duct

Figure 15 depicts the distal tubule and collecting duct.
The amount of ADH may be controlled by the student.
Higher permeability of the tubule wall for water is
represented by widening of the blue water channels. The
goal is to explain how ADH affects the reabsorption:
With no ADH, there is no reabsorption. Filtrate goes
through unaffected. Urine production rate is high and
its osmolarity is low. With full ADH so much water
is reabsorbed that the urine osmolarity equalizes with
osmolarity of the surrounding medulla. Only small
amount of highly osmotic urine is produced.

Complete nephron

Figure 16 shows a complete nephron. All the
information from previous screens is recapitulated here.
For simplicity the GFR is controlled directly instead of
controlling afferent and efferent arteriole resistance as
it was in the glomerulus section. ADH is controlled as
well.

4 Discussion and conclusion
New framework Bodylight.js for building web-based
simulators was presented. Bodylight.js will be available
for public use, but it is still under heavy development
and not ready for widespread deployment. We
encourage interested parties to contact us and we will
gladly provide access and documentation. We welcome
any feedback and code contributions others can provide.
The Bodylight.js was already used to compose three
teaching simulators and proved to be really useful. One
of them, the Nephron simulator was presented within
this paper. This simulator will be used in physiology
lectures at our faculty and will be updated according
to the feedback from teachers and students alike.
Physiological model for this simulator was developed as

Figure 14. Loop of Henle. Red arrows show the urine
flow direction. Water molecules passively leave the urine
making it more concentrated from physiological 300
mosm/l down to 1200 mosm/l in the descending tubule.
The blue dashed arrows indicate the amount of water
molecules transfer from tubulus along its osmotic gradient.
The ascending tubule is virtually impermeable to water
molecules while sodium ions are actively pumped outside
the tubulus. The width of the purple arrows indicates the
amount of the sodium reabsorption.

Figure 15. Distal tubule and collecting duct represent the
last two segments of a nephron. The distal tubule and the
collecting duct are permeable for water molecules, however,
the net flow across the tubule wall is endocrinologically
regulated via ADH. As a result the body is able to fine tune
the urine osmolarity according to the circumstances.

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 401
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

well. Results of the model were checked by physiologists
and are approximately correct, enough for the teaching
purposes. We plan to add a follow-up simulator including
more solutes and additional regulation mechanisms.
We have built an extensive library of simulators with the
previous, now defunct, Silverlight technology, covering
large portions of physiological systems. We hope that
by relying on standardized web technologies we can
provide a plethora of new and future-proof web based
teaching applications.

Acknowledgement
This work was supported by the TRIO MPO FV20628,
SVV260371, PROGRESS Q26 grants and the Creative
Connections s.r.o.. We thank Martin Brož for the
artwork.

References
Blochwitz T, Otter M, Akesson J, et al. (2012) Functional
mockup interface 2.0: The standard for tool independent
exchange of simulation models. In: Proceedings of the 9th
International MODELICA Conference; September 3–5;
2012; Munich; Germany, 2012, pp. 173–184. Linköping
University Electronic Press. Available at: http://www.ep.liu.
se/ecp_article/index.en.aspx?issue=076%20;article=017.

Christ A and Thews O (2016) Using numeric simulation
in an online e-learning environment to teach functional
physiological contexts. Computer methods and programs in
biomedicine 127: 15–23. DOI: 10.1016/j.cmpb.2016.01.012.

Enculescu M, Metzendorf C, Sparla R, et al. (2017) Modelling
Systemic Iron Regulation during Dietary Iron Overload
and Acute Inflammation: Role of Hepcidin-Independent
Mechanisms. PLoS computational biology 13(1): e1005322.
DOI: 10.1371/journal.pcbi.1005322.

Fritzson P and Engelson V (1998) Modelica—A unified object-
oriented language for system modeling and simulation. In:
European Conference on Object-Oriented Programming,
1998, pp. 67–90. Springer. Available at: https://link.
springer.com/chapter/10.1007/BFb0054087.

Hoppensteadt FC and Peskin CS (1992) Mathematics in
Medicine and the Life Sciences. DOI: 10.1007/978-1-4757-
4131-5.

Ježek F, Privitzer P, Mateják M, et al. (2012) Demonstration
of the Risk of Fixed Ejection Volume in Ventricular Assist
Devices in Small Patients Using Web Simulator. In: 5th
European Conference of the International Federation for
Medical and Biological Engineering, 2012, pp. 489–492.
Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-
23508-5_127.

Ježek F, Tribula M, Kolman J, et al. (2013) Sada výukových
simulátorů – výsledky vývoje frameworku bodylight.
MEDSOFT 2013: sborník příspěvků: 38–48. Available at:
http://www.medvik.cz/link/bmc13015203.

Kofránek J, Privitzer P, Matoušek S, et al. (2009) Schola Ludus
in Modern Garment: Use of Web Multimedia Simulation
in Biomedical Teaching. IFAC Proceedings Volumes
42(12). Elsevier: 413–418. DOI: 10.3182/20090812-3-DK-
2006.0087.

Kofranek J, Matousek S, Rusz J, et al. (2011) The Atlas of
Physiology and Pathophysiology: Web-based multimedia
enabled interactive simulations. Computer methods and
programs in biomedicine 104(2): 143–153. DOI: 10.1016/j.
cmpb.2010.12.007.

Kulhánek T, Mateják M, Šilar J, et al. (2013) Hybridní
architektura pro webové simulátory. MEDSOFT 2013:
sborník příspěvků: 115–121. Available at: http://www.
medvik.cz/link/bmc13015212.

Matejak M and Kofranek J (2015) Physiomodel – an integrative
physiology in Modelica. Conference proceedings: ...
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference 2015: 1464–
1467. DOI: 10.1109/EMBC.2015.7318646.

Modelica Association (2017) Tools | Functional Mock-
up Interface. Available at: http://fmi-standard.org/tools/
(accessed 21 July 2017).

Figure 16. Screen of the whole nephron model, i.e.
glomerulus, proximal tubule, descending and ascending
loop of Henle, distal tubule and collecting duct. Besides
others, the mass flow rate of excreted Na is displayed.

Model visualization for e-learning, Kidney simulator for medical students

402 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

 Smith J (2015) Moving to HTML5 Premium Media –
Microsoft Edge Dev Blog. Available at: https://blogs.
windows.com/msedgedev/2015/07/02/moving-to-html5-
premium-media/ (accessed 27 August 2018).

Tiller MM and Winkler D (2017) modelica.university: A
Platform for Interactive Modelica Content. In: Proceedings
of the 12th International Modelica Conference, Prague,
Czech Republic, May 15–17, 2017, 4 July 2017, pp.
725–734. Linköping Electronic Conference Proceedings.
Linköping University Electronic Press. DOI: 10.3384/
ecp17132725.

Tribula M, Ježek F, Privitzer P, et al. (2013) Webový výukový
simulátor krevního oběhu. MEDSOFT 2013: sborník
příspěvků: 197–204. Available at: http://www.medvik.cz/
link/bmc13015231.

WebAssembly High-Level Goals – WebAssembly (n.d.).
Available at: https://webassembly.org/docs/high-level-
goals/ (accessed 24 September 2018).

Zakai A (2011) Emscripten: An LLVM-to-JavaScript
Compiler. In: Proceedings of the ACM International
Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, New
York, NY, USA, 2011, pp. 301–312. OOPSLA ’11. ACM.
DOI: 10.1145/2048147.2048224.

Zhang S (2001) An IIOP architecture for Web-enabled
physiological models. Massachusetts Institute of
Technology.

	Session 3D: New Applications
	Model visualization for e-learning, Kidney simulator for medical students

	Session 4A: Power & Energy 3

