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Abstract 
A Modelica language extension for structural non-
monotonic model variation is presented. It enables 
selective model extension: the well-defined refinement 
of models by deselecting components and connections 
not of interest or inappropriate for a new design. The 
need for such variations is explained by the example of 
Modelica Synchronous, whose adaptation is suffering 
from crosscutting synchronous decompositions that 
cannot be anticipated when continuous models are 
designed; instead, contradicting model structure has to 
be removed when an actual sampling is desired. 
Besides synchronous, further applications for selective 
model extension are investigated using our prototype 
implementation in Dymola. 
Keywords: Modelica, model variation, synchronous 

1 Introduction 
Of key importance for Modelica is model variation 
support, enabling simulation of design alternatives and 
their step-wise refinement from idealistic prototypes to 
physically-detailed solutions. To that end, Modelica 
provides many different abstraction and variation 
techniques, like model extension, replaceable 
components, parameters and component modifications. 

Having a strong heritage from object-oriented 
programming however, Modelica’s model variation 
constructs are monotonic with respect to model 
structure because components, connections or 
equations can only be added but not removed when 
extending models. An unfortunately overlooked 
consequence of flatting is however, that such a 
structural-monotonic type-strictness, as known from 
class inheritance in traditional strongly typed object-
oriented programming languages like Java or C++, is 
not required in Modelica. In Modelica, models are 
flattened before simulation. Flattening essentially 
reduces the design space of a set of models to a fixed 
number of instances according to a given 
parameterization and replaces the resulting instances 
with their corresponding fixed equation system 
(Modelica Association, 2017). The difference to 
traditional strongly typed object-oriented programming 
is striking: all instances are known before runtime, 
such that they can be statically constructed. There 
exists no runtime control-flow in Modelica that may 

cause different instantiations of entities; dynamic 
dispatch is not required, ultimately neglecting object-
oriented polymorphism and the type-system 
restrictions that typically come with it (Wegner, 1987; 
Knudsen 1993)1. As a consequence, Modelica’s current 
restriction that sub-models must inherit all components 
and connections of their base-models when extending – 
that model extension must be monotonic with respect 
to model structure – can be dropped. 

Leveraging on this observation, the paper presents a 
new Modelica-language extension for non-monotonic 
modelling: selective model extension. Selective model 
extension can be used to exclude components and 
connections in a well-defined way from inheritance 
when extending models. Its semantic can be fully 
understood in terms of model-diagram edits, such that 
tools can support a convenient graphical user interface 
for structure-wise non-preserving model variation. The 
main contribution of selective model extension 
therefore is to enable unforeseen structural variability 
without requiring deliberately prepared base-models. 

The paper starts with an evaluation on the need for 
non-monotonic model variation in Modelica (Section 
2). To that end, the application of Modelica 
Synchronous (Elmqvist et al, 2012; Otter et al, 2012) 
to refine continuous models for discrete use-cases is 
chosen which requires non-monotonic modeling to 
handle the crosscutting clock-partitions of different 
synchronous designs. Based on the non-monotonic 
modeling requirements elaborated throughout that 
discussion, an exact syntax and semantic for selective 
model extension is presented (Section 3). A 
demonstration of general practical modelling-benefits, 
not only for Modelica Synchronous, follows (Section 
4). A prototype implementation in Dymola is used on a 
sophisticated example taken from the Modelica 
Standard Library to show how selective model 
extension enables model-development along the lines 
of real engineering processes – i.e., in terms of step-
wise model variation and adaptation – avoiding model 
variation inconsistencies and artificial intermediate 
models without physical meaning. 
                                                 
1Object-oriented languages typically require monotony of inheritance to 
ensure the functionality of entities is well-defined for all usage-contexts, 
independent of control-flows determining instantiation. If sub-classes 
could drop base-class functionality – i.e., inheritance could be non-
monotonic – runtime errors are possible whenever base-class 
functionality is called on sub-class objects. Static type-systems enforce 
monotonic inheritance to avoid such errors in the first place. 
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2 Motivation: Modelica Synchronous 
adaptation challenges 

This section motivates the need for non-monotonic 
model variation. As a practical problem the potential of 
Modelica Synchronous (Elmqvist et al, 2012; Otter et 
al, 2012) for existing examples of the Modelica 
Standard Library is investigated. The challenge is to 
enable use-case driven partial sampling of continuous 
systems without having to change them and with 
reasonable adaptation workload. As will be shown, the 
crosscutting of synchronous decompositions cannot be 
handled by monotonic model variation however; a 
refinement-based non-monotonic adaptation is 
required, giving rational for the selective model 
extension proposed in Section 3. 

The modelling problems presented in the following 
are not Modelica Synchronous specific; they can be 
generalized as will be shown in Section 4. 

2.1 Synchronous potential of the MSL 
The Modelica Standard Library 3.2.2 has about 60 
existing continuous example test-models with 
controllers whose discrete modelling might be of 
interest (cf. Appendix A for the used selection criteria). 
A lot of these test-models share the same controller, 
maybe differently parameterized. For example, the 35 
models of Electrical.PowerConverters.Examples 
interesting for synchronous modelling share just five 
controllers defined in PowerConverters.ACDC.Control 
and PowerConverters.DCDC.Control. The remaining 25 
test-models are much more heterogeneous however, 
making each a potentially worthwhile candidate for 
synchronous adaptation. 

2.2 Objective: synchronous adaptation of 
continuous models via refinement 

To adapt 60 test-models for synchronous is a major 
effort, in particular coordinating so many authors from 
different engineering domains. Involvement of the 
original authors therefore should be minimized and 
mostly only be required to ensure that the controllers of 
the existing continuous test-models are relevant for 
sampling from a domain perspective. After all, the 
existing test-models as such – their purely continuous 
modelling – are mature and useful. 

To that end, sampling of their controllers should be 
an independent task, not requiring changing the 
original models. Instead, samplings should be 
introduced in terms of derived test-models that only 
add discrete partitions, i.e., by refinements adding 
samples, holds and clocks with respect to the 
components of an existing model. Such derived tests-
models would be partially-discrete instances of their 
continuous originals, ultimately enabling validation 
and investigation of different samplings. 

The original test-models would stay unchanged and 
cannot be corrupted by synchronous adaptation errors; 
their correctness is assured from previous model 
reviews and testing. Code duplication and 
inconsistencies are avoided and upcoming library 
changes eased. Ideally, future changes of a continuous 
model are either automatically incorporated in its 
derived partially-discrete models (in case the structural 
interface between continuous and discrete parts is not 
influenced, i.e., there are no new controller inputs or 
outputs), or result in translation errors of its derived 
partially-discrete models (denoting that the controller 
interface changed and samplings must be adapted). 

To support such an iterative development process 
with seamless and incremental design from a 
continuous whole system model to different partially 
discrete variations via model-refinement is of uttermost 
importance for the success of Modelica Synchronous; 
it enables the incorporation and automatic change 
propagation of late continuous and discrete design 
changes and would be a distinctive Modelica feature 
compared to common block diagram based languages 
for causal-modelling of controllers. 

2.3 Problem: monotony of model extension 
To derive a partially-discrete model by sampling parts 
of an existing continuous model requires the 
introduction of samples, holds, clocks and their 
respective connections such that the derived model has 
a consistent clock partitioning. Modelica’s existing 
model extension via extends is sufficient to add all 
required synchronization components. The derived 
model can also add the connections combining the 
sample and hold operators of the intended discrete 
model partitions with the model parts remaining 
continuous. The resulting derived model is inconsistent 
however, because it comprises all components of the 
original continuous model, particularly the old 
connections bypassing the sample- and hold-interface 
just introduced; clock-partitioning of the derived model 
fails due to the structural singularities resulting from 
having contradicting sampled and non-sampled 
connections. Since model extension via extends can 
only add components, modify the value of inherited 
components or exchange components deliberately 
prepared for variability via replaceable, it is 
impossible to fix clock-partitioning errors due to 
inherited connections and therefore consistently 
incorporate samplings. 

2.4 Problem: prescient modelling 
To enable sampling via model extension, 
parametrization or modification requires deliberate 
preparations of model parts that might become subject 
to sampling. For example, models could be prepared 
for sampling by pushing the parts constituting 
controllers into separate models and referencing them 
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as replaceable components well-suited for modification 
or by using conditional declarations instantiating a 
continuous or discrete design depending on 
parameterization. Such workarounds are in conflict 
with our objectives however, as they anticipate specific 
samplings before their actual need, implying changes 
of the original model when the need for a new specific 
sampling actually arises. Deliberate preparations of 
models to enable future samplings naturally only 
enable the prepared samplings, i.e., specific discrete 
use-cases. To anticipate all possible samplings of 
continuous model parts that might be of interest in 
future discrete use-cases is impractical however. 

2.5 Problem: crosscutting synchronous 
decompositions 

The design of controllers significantly varies 
depending on available sensor information (varying 
control input signals) and control-task splitting 
(varying model parts constituting controllers, for 
example due to independent asynchronous control vs. 
synchronous cascade-control with different sub- or 
super-samplings). Typically, many reasonable 
synchronous designs exist, each resulting in a specific 
clock partitioning. The clock partitions of different 
synchronous designs are likely in conflict however. 

 
Figure 1. Induction machine with voltage controller. 

Consider for example the electrical excited 
synchronous induction machine of the Modelica 
Standard Library presented in Figure 1 
(Electrical.Machines.Examples.SynchronousInducti
onMachines.SMEE_Rectifier). Five different 
synchronous designs immediately come to mind for its 
voltage controller: (1) a fat controller, comprising not 
only the gain and PI controller but also filter, (2) a 

design with the filter being independent, either as (2.1) 
a separate asynchronous sampled system or (2.2) not 
sampled at all and (3) a cascade control, with the filter 
being (3.1) sub-sampled, in case set point changes are 
more critical than filtering the current voltage, or (3.2) 
super-sampled, in case the filter implementation 
requires higher sample rates than the rest of the 
controller. The clock partitions of all five variants are 
in mutual conflict although each, in itself, is sound. 

Important for our investigation is that Modelica 
models already have a dominant decomposition with 
respect to their component hierarchy (network of 
interconnected hierarchical components); and it is that 
very hierarchy in whose terms model variation is 
defined using parametrizations, modifications and re-
declarations, whereas model extension always 
preserves it. Clock partitioning however is about 
decomposing a model according to its differently 
clocked parts. Thus, even if a model’s structure is 
aligned with some future synchronous design, it will be 
in conflict with other designs. Clock partitioning 
crosscuts the natural composition of physical systems 
as hierarchical component networks2. 

2.6 Solution: non-monotonic extension 
To incorporate a specific sampling into an existing 
model means to modify its component network 
according to the sampling’s crosscut, i.e., to change the 
model’s structure at the intersection points of clock 
partitions and further control-design adaptations. 
Intersection points of clock partitions correspond to 
connections that must be removed; instead respective 
samples and holds are added, connecting the clock 
partitions. Control-design adaptations usually 
correspond to components that have to be removed 
because the new control-design is structural different 
duo to changed sensor and actuator usage (for example 
the filter and gain of Figure 1 may not be required by a 
third party library controller). All such changes are 
well-defined by removing connections and components 
that are superfluous and replaced by the intended 
synchronous design. The required refinement can be 
defined as ordinary model extension with parts of the 
original model excluded from inheritance, ultimately 
enabling structural non-monotonic changes. 

3 Selective model extension proposal 
This section presents a concrete proposal to enable 
non-monotonic modelling in Modelica. The proposed 
selective model extension enables the deselection of 

                                                 
2Implementation techniques for system parts cross-cutting a dominant 
component hierarchy are subject of aspect-oriented programming 
(Kiczales et al, 1997; Tarr 1999). Particularly object-oriented 
programming language extensions enabling crosscutting implementation 
are well-investigated. The proposed selective model extension can be 
seen in that tradition; it is Modelica-specific however, since it depends 
on static instantiation via model-flattening as explained in Section 1. 
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connections and components when extending models. 
To start with, a simple sampling example sketches the 
new language concepts. The definition of actual syntax 
and semantic follows. 

3.1 Selective model extension example 
Consider again the controlled induction machine 
presented in Figure 1. Figure 2 presents three different 
synchronous control designs for it, implemented in the 
following using selective model extension to handle 
their structural non-monotonic variation. 
(a) Simple sampling scenario: A straightforward 
synchronous control design is to just sample the control 
components of the original example. To that end, the 
connections between voltageSensor and filter, 
speedSensor and setPointGain and voltageController 
and excitationVoltage have to be replaced with 
likewise-connected samples and holds. Using selective 
model extension, the implementation of Figure 2 (a) is: 

 

model SMEE_Rectifier_Sampled 
extends SMEE_Rectifier; 

/* PART 1: Drop “outdated” continuous parts. */ 
  // Exclude connections from inheritance: 
  for each extends 
    break connect(voltageSensor.v, filter.u); 
    break connect(speedSensor.w, 
                  setPointGain.u); 
    break connect(voltageController.y, 
                  excitationVoltage.v); 
  end for each extends; 
/* PART 2: Introduce sampling. */ 
  // Introduce clock, samples and hold and… 
  PeriodicRealClock clock( 
    period = 0.001, 
    useSolver = true); 
  SampleClocked sample_u_m; 
  Sample sample_u_s; 
  Hold hold_y; 
equation  
  // …connect them: 
  connect(clock.y, sample_u_m.clock); 

  connect(voltageSensor.v, sample_u_m.u); 
  connect(sample_u_m.y, filter.u); 
  connect(speedSensor.w, sample_u_s.u); 
  connect(sample_u_s.y, setPointGain.u); 
  connect(voltageController.y, hold_y.u); 
  connect(hold_y.y, excitationVoltage.v); 
end SMEE_Rectifier_Sampled; 

 

The new sampling-related components – the clock, 
sample and hold and their connections with inherited 
components – are introduced as used to and are subject 
to normal Modelica 3.4 semantic (Part 2). Also syntax 
and semantic of the extends clause are as used to, 
except that the for each extends block modifies the 
set of features the extends clause defines to be 
inherited (Part 1). Each break connect clause within a 
for each extends block removes the respective 
connection from the set of features the model inherits. 
Note the plural form clauses, implying that for each 
extends modifies all extends clauses of a model. In 
our case, just the extension from SMEE_Rectifier is 
modified, excluding the ingoing connections of filter 
and setPointGain and the outgoing connection of 
voltageController from inheritance; the deselections 
are break connect(voltageSensor.v,filter.u), break 
connect(speedSensor.w,setPointGain.u) and break 

connect(voltageController.y,excitationVoltage.v). 
 

(b) Off-the-shelf controller scenario: Another 
reasonable design is to use an off-the-shelf controller 
provided by a specialized library, as shown in Figure 2 
(b). To that end, the original control components have 
to be replaced. Note the plural; not a single 
replaceable component is changed, but the complete 
component network constituting the controller. 
Assuming the new controller still requires the filtering 
of voltage, only voltageController and setPointGain 
have to be removed. Using a selective model extension 
of scenario (a), the implementation of Figure 2 (b) is: 

 

         

Figure 2. Three control scenarios for the induction machine of Figure 1 (controller only excerpts). 

                      (a) simple sampling                        (b) off-the-shelf controller            (c) off-the-shelf dampening-controller 
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model SMEE_Rectifier_ExternalController 
  extends SMEE_Rectifier_Sampled; 
// Remove original controller with connections: 
  for each extends 
    break voltageController; 
    break setPointGain; 
  end for each extends; 
// Introduce the new controller… 
  replaceable ExternalController v_controller; 
equation  
// …and connect it: 
  connect(filter.y, v_controller.u_m); 
  connect(v_controller.y, hold_y.u); 
  connect(sample_u_s.y, v_controller.u_s); 
end SMEE_Rectifier_ExternalController; 

 

The original controller and gain are excluded from 
inheritance via break voltageController and break 
setPointGain. Deselecting a component automatically 
deselects all its connections. Thus, the only thing to do 
besides deselecting the original control components is 
to integrate the new controller reusing the sampling 
inherited from scenario (a). 

 

(c) Off-the-shelf dampening-controller scenario: 
Finally, an off-the-shelf controller with specialized 
dampening of its input voltage can be used as shown in 
Figure 2 (c). In that case, the original filter is not 
required. The implementation based on scenario (b) is: 

 

model SMEE_Rectifier_DampeningExternalController 
  extends SMEE_Rectifier_ExternalController( 
    redeclare DampeningController v_controller); 
  for each extends 
    break filter; 
  end for each extends; 
equation  
  connect(sample_u_m.y, v_controller.u_m); 
end SMEE_Rectifier_DampeningExternalController; 

 

Conclusions: Scenarios (a) to (c) demonstrated the 
consecutive synchronous adaptation of a continuous 
model. Each refinement step required structural non-
monotonic changes in terms of removing superfluous 
connections and components inappropriate for a more 
sophisticated control design. Using selective model 
extension, the respective synchronous adaptations are 
possible without changing the original continuous 
model, ensuring configuration consistency of the 
controlled system when comparing the synchronous 
designs one another. Also diagrammatic consistency is 
improved; after all, the diagrams of Figure 2 are 
derived from Figure 1 by normal extends semantic and 
our Dymola implementation of deselections. 

3.2 Syntax: selective extension clauses and 
inheritance modifications 

Selective model extension as presented in Section 3.1 
requires rule-additions to Modelica’s context-free 
grammar. The changes required are very limited 
however. Only an additional alternative for element 
(cf. Appendix ”B.2 Grammar“ of the Modelica 3.4 
specification) has to be added: 

 

element : 
  import-clause |  
  extends-clause |  

  selective-extension-clause | // new 
  [ redeclare ]  
  [ final ]  
  [ inner ] [ outer ]  
  ( (class-definition | component-clause) |  
    replaceable ( 
      class-definition | component-clause) 
    [constraining-clause comment]) 

 

whereas selective-extension-clause is: 
 

selective-extension-clause :  
  for each extends 
  { inheritance-modification “;” } 
  end for each extends 

 

and inheritance-modification is: 
 

inheritance-modification : 
  break connect-clause | // Connection and… 
  break IDENT // …component deselection. 

 

with connect-clause and IDENT already well-defined in 
the specification. No new keywords are introduced. 
The new context-free derivations for each extends, 
break connect and break IDENT are syntax errors in 
current Modelica. As a consequence, the proposed 
selective model extension never changes the semantic 
of existing valid Modelica 3.4 models. Models that are 
syntactically invalid could theoretically become valid 
however, but chances are extremely low3. 

3.3 Semantic: terminology, well-formedness 
and interpretation 

An important criterion of selective model extension is 
to ensure applications are meaningful. A selective 
extension is meaningful when all its modifications of 
the set of inherited elements are unambiguous and 
applicable, in which case it is called well-formed. 
Selective extensions that are not well-formed are 
modelling errors; they are meaningless, i.e., without 
unique interpretation defining the result of their 
application. The rest of this section defines well-
formedness and interpretation for the proposed syntax. 

3.3.1 Terminology 
To ease further discussion, we define the following 
terms (words embraced by parenthesis are optional, 
only improving readability; the term “if X is evident” 
denotes “if X is already well-defined by context (i.e., 
specific) or not of particular interest (i.e., generic)”; the 
term “derivation” denotes a context-free derivation 
according to the syntax specified in Section 3.2): 

 

(a) Context of selective extensions: A selective-
extension-clause derivation S within a model A with 
arbitrary many extends clauses E1, … En, that extend 

                                                 
3It is not likely that a syntax error happens to satisfy the proposed 
syntax. It is even less likely the respective model will further satisfy the 
semantic constraints explained in Section 3.3.2; and, due to deselections, 
it is close to impossible that it is valid considering existing Modelica 
well-formedness constraints like “referenced components must be 
declared” and “the system of equations must be well-defined”. 
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models M1, … Mn respectively, is called a “selective 
(model) extension of M1, … Mn”; if M1, … Mn are 
evident, just “selective (model) extension”. E1, … En 
are called “(local) extends-clauses of A”. S is called 
“extends-modification of A”. If A is evident, we just 
speak of “local extends-clauses” and “extends-
modification”. We say “S is local to A”, “E1, … En are 
local to A”, “E1, … En are local to S” and vice-versa; 
and we call an “α local to β” a “(local) α of β” and 
vice-versa. We further say “S modifies E1, … En” and 
“A selectively extends M1, … Mn with respect to S”. If 
M1, … Mn or S are evident, we just say “A selectively 
extends”. This terms are called “context of S”; if S is 
evident, just “selective extension context”. 

 

(b) Context of deselections: A selective extension S 
is a block; its body consists of the inheritance-
modification derivations m1, … mn applied throughout 
the derivation of S. Each inheritance-modification 
derivation is called a “deselection of S”; if S is evident, 
just “deselection”. The set m1, … mn are the 
“deselections of S”; if S is evident, just “deselections”. 

 

We distinguish two types of deselection: 
(b.1) break connect-clause derivations are called 

“connection deselection” 
(b.2) break IDENT derivations are called 

“component deselection” 
 

If a deselection type is evident, we just say “element” 
instead of connection or component. 

The subset of connection deselections of the 
deselections of S are called “connection deselections of 
S”; if S is evident, just “connection deselections”. The 
deselections of S that are not connection deselections 
are called “component deselections of S”; if S is 
evident, just “component deselections”. 

The relations defined for S in (a) – like extends-
clauses, extends-modification, modifies etc. – also hold 
for the deselections of S. We therefore can speak of the 
context of a deselection, defined by the model it is 
local to and the local extends clauses it modifies; and it 
is true by definition that “deselections are extends-
modifications of their local model and models 
selectively extend with respect to their deselections”. 

 

(c) Extent of selective extensions: Let Iextends be the 
set of elements the local extends clauses of a model A 
define to be inherited; let connection elements be 
represented by their respective connect-clause 
derivations in Iextends and components by IDENT 
derivations, i.e., their name. We call Iextends the 
“preselective-extent of A”. Let Dconnection be the set of 
connection deselections of A and Dcomponent the set of 
component deselections. We call two connections 
connect(a1, b1) and connect(a2, b2)  “matching” if 
either a1 = a2  b1 = b2 or a1 = b2  b1 = a2. 

We call an inherited connection ci Iextends “extent 
of a (connection) deselection” d = break cd Dconnection 
if cd and ci are matching and say “ci is deselected due 

to d” and “d deselects ci”; if d is evident we just say “ci 
is deselected”, and if ci is evident we just speak of a 
“deselected T (connection)” whereas T is the connector 
type of ci. If also T is evident, we just speak of a 
“deselected connection”. 

We call an inherited component ci Iextends “extent 
of a (component) deselection” d = break cd Dcomponent 
if cd = ci and say “ci is deselected due to d” and “d 
deselects ci”; if d is evident we just say “ci is 
deselected”, and if ci is evident we just speak of a 
“deselected T (component)” whereas T is the 
component type of ci. If also T is evident, we just speak 
of a “deselected component”. 

Let ci be a component deselected due to a 
deselection d. We call the set D = ci  {c Iextends | c is 
connection of ci} the “transitive-extent of d”; if d is 
evident, we just speak of a “transitive-extent”. For each 
c D \ ci we say “c is indirectly-deselected due to d”; 
if d is evident, we just say “c is indirectly-deselected” 
and, if c is also evident, we speak of an “indirectly-
deselected connection”. Indirectly-deselected 
connections are deselected connections. The transitive-
extent of a connection deselection is just its extent. 

We call the union of the transitive-extents of the 
deselections of A the “deselective-extent of A”. Let 
Ideselected be the deselective-extent of A; we call the set 
Iselected = Iextends \ Ideselected “selective-extent of A”; if A is 
evident, we just speak of “preselective-”, “deselective-
” and “selective-extent”. 

 

Colloquial usage: Whenever we emphasize the act of 
modelling via introducing deselections for an element 
or element type E, we use the term “deselection of E” 
or “deselecting E”; if E is evident, we just speak of 
“deselecting”. Likewise, we speak of “selection of E” 
and “selecting E” for removing, or deliberately not 
introducing, deselections for E. 

3.3.2 Well-formedness 
Five well-formedness constraints are proposed for 
selective model extension. The following list also gives 
a short rational for each constraint: 

 

Constraint (1) Selective model extensions must be 
element of a model or block (i.e., the enclosing scope 
of a selective-extension-clause must be a class-
definition whose class-prefixes are derived to 
model, block, partial model, or partial block; cf. 
Appendix B.2.2 of the Modelica 3.4 specification). 

 

Rational: Connector classes are prohibited to use 
selective extension because their whole purpose is to 
define common interfaces; deselection of connector-
components would essentially make the derived 
connectors incompatible. Types are excluded for 
similar reasons. Records are excluded to avoid runtime 
errors due to instances queried for deselected fields. 
Packages are excluded because they are used to define 
a modelling environment with well-defined features; to 
reduce availability of provided features contradicts 
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their purpose in the first place. Deselection of function 
in- and out-puts is prohibited, because call-sites depend 
on the applicability of a function’s interface. 

 

Constraint (2) The extent of deselections is not 
empty (i.e., for each deselection exists a local extends 
clause that inherits the deselected element). 

 

Rational: Selective extensions should be meaningful, 
i.e., each of their deselections should be applicable. 
The constraint also makes it impossible to deselect 
beforehand, eliminating the risk that sub-models 
accidentally miss future base-model improvements. 

 

Constraint (3) Deselected components are not 
modified by local extends-clauses. 

 

Rational: Modifying a component and deselecting it 
within the same model hints at a modelling error. 

 

Constraint (4) Deselected elements are not final.4 
 

Rational: final is deliberately introduced by 
developers to prevent common model-configuration 
errors due to further modifications; this naturally 
encompasses modifications changing the existence of 
final modified components. The constraint also 
prevents the reintroduction of deselected final 
components as non-finals. 

 

Constraint (5) Models have at most a single 
selective extension clause. 

 

Rational: Since selective extension modifies all local 
extends-clauses, it makes sense to collect all 
deselections of a model within a single for each 

extends block. Doing so avoids scattering of 
inheritance modifications, ultimately increasing 
readability of models. 

 

These constraints can be checked just considering the 
set of connections and components inherited due to 
local extends-clauses; there is no need to mutually 
compare the individual sets. Details, how inherited 
elements are defined, particularly if base-models apply 
other selective extensions, are not required. 

Note that the proposed well-formedness constrains 
do not prohibit extending models from reintroducing 
components deselected. This is useful to solve 
currently non-manageable multiple-inheritance 
conflicts due to structural differences of base-models. 

No further restrictions regarding the well-
formedness of equations are proposed. Deselection of 
connections can result in structural non-singular 
equation systems however; likewise deselected 
components may result in base-model equations with 
unresolved references. The fallback on default equation 
well-formedness is important. It ensures the context of 
selective extensions is sound; in practice, this means 
that the “structural-holes” due to deselections must be 

                                                 
4Constraint (4) does not prohibit the deselection of components 
containing final elements, as long as the deselected component itself 
is not final. 

properly fixed and invalidating base-model changes are 
caught. Note that speaking of “structural-holes” is 
reasonable, considering deselections are defined with 
respect to diagram-wise clearly distinguishable model 
parts; selective model extension is about the removal 
of interconnected component networks. To accidentally 
change model semantic not visible within the diagram 
layer, like non-connection equations, is impossible. As 
a consequence, deselection can be realized as graphical 
edit-operations in the diagram layer of Modelica tools. 

3.3.3 Interpretation 
Given the terminology of Section 3.3.1 and the well-
formedness constraints of Section 3.3.2, defining an 
interpretation for well-formed selective model 
extensions is straightforward. 

The objective of a selective extension is to exclude 
elements from inheritance. To that end, one has to take 
care of – colloquial speaking – three kinds of inherited 
elements: (1) the elements inherited by a model’s local 
extends clauses (i.e., inheritance as used to from 
Modelica 3.4), (2) the elements excluded from this set 
and (3) the resulting actually inherited elements. With 
respect to Section 3.3.1, these sets are the preselective-, 
deselective- and selective-extent. 

The extent definitions of Section 3.3.1 are 
constructive; first, the preselective-extent is derived, 
based on it the deselective-extent, finally followed by 
the selective-extent. Note that, the extents can be 
empty for the definitions to hold. The deselective-
extent of a model without a selective extension is the 
empty set; such a model’s selective-extent just is its 
preselective. This characteristic significantly limits the 
changes required in the existing Modelica specification 
to incorporate selective model extension. 

In the end, the interpretation of selective model 
extension just boils down to the addition of the 
terminology introduced in Section 3.3.1 and a single 
modification of the Modelica 3.4 specification 
regarding the definition of inherited elements; the new 
definition is: “the inherited elements of a model are its 
selective-extent”. 

4 Advanced application scenarios 
The applications of selective model extension 
presented so far are all in the domain of Modelica 
Synchronous. In the following, further applications, 
with the focus on general advantages for modelling 
from an engineering perspective, are investigated. To 
that end, selective extension is used to redesign an 
existing example scenario of the Modelica Standard 
Library; doing so will reveal implementation-
shortcomings of the example and how non-monotonic 
modeling can be used to avoid them. First however, 
another important use case for selective model 
extension is presented: to adapt whole system models 
for further external or component usage. 
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4.1 Component extraction example 
Figure 3 presents the well-known coupled clutches 
example of the Modelica Standard Library 
(Mechanics.Rotational.Examples.CoupledClutches) 
and two variations of it. The first variant prepares its 
export as Functional Mockup Unit (FMU) that can be 
distributed to third parties for simulation in non-
Modelica contexts (Modelica Association, 2014); the 
second variant prepares the coupled clutches for usage 
as component within further Modelica models. In both 
cases, the fixed input stimuli of the original example 
must be removed and replaced by respective input 
connectors. The normal forces of the clutches just 
become real inputs; the in- and outputs of the inertias 
depend on usage however. 

 
(a) original coupled clutches 

 
(b) extracted FMU model based on (a) 

 
(c) extracted component model based on (b) 

Figure 3. Coupled clutches FMU/component extraction. 
For FMU simulation, the input tau for the first inertia 
is a torque and the output of the simulation is the 
absolute angular velocity w of the fourth inertia J4; 
thus, both are just real values. For component usage 
however, one would like to stay with the flange 
interface of the Modelica Standard Library for the in- 
and output of the first and last inertias. Doing so 
ensures proper flow-derivation of the cut-torques5. 

                                                 
5Because flow-variables – and therefore Modelica-like automatic flow-
value derivation – are not supported in the FMI 2.0 standard, users of the 
FMU-component of Figure 3 (b) have to be careful that torques are 
correctly modeled in application contexts of the FMU; in that sense the 
FMU-component is less flexible compared to the Modelica-component 
of Figure 3 (c). On the other hand, the flow-variables of the flange-
interface are the reason why the Modelica-component is unsuitable for 
FMU-export and usage in external simulations. 

Both adaptations are straightforward using selective 
extensions. For FMU extraction the implementation is 

 

extends …Rotational.Examples.CoupledClutches; 
for each extends 
  break sin1;break sin2;break step1;break step2; 
end for each extends; 

 

accompanied by introducing and connecting the in- and 
output normal forces, torque and velocity as shown in 
Figure 3 (b). When extracting a component however, 
the torque adapter becomes superfluous since a proper 
flange input will be provided. In terms of the FMU 
model, the respective selective extension is 

 

extends CoupledClutches_FMU; 
for each extends 
  break torque; break fixed; break tau; 
end for each extends; 

 

this time accompanied by introducing and connecting 
the in- and output flanges as shown in Figure 3 (c). 

In conclusion, selective model extension enables to 
extract a component model from a whole system model 
and incorporate the usage-interfaces of future 
application contexts. Doing so we know the extracted 
component is working; after all it comes from a well-
tested, whole system model with proper simulation that 
has just been lifted to a component on demand. 

4.2 Domain-driven refinement example 
Our final selective extension scenario is the step-wise 
design of a one cylinder engine, as exemplified by the 
Engine1a, Engine1b and Engine1b_analytic models in 
package Mechanics.MultiBody.Examples.Loops of the 
Modelica Standard Library. The basic idea is to design 
a final analytic engine model starting from an idealized 
model via one considering the gas force in the cylinder. 
Figure 4 summarizes the current solution of the 
standard library. There are several problems with it, all 
due to the lack of non-monotonic modeling means. 

The most obvious inconsistency is that the models 
incorporating the cylinder’s gas force (Engine1b and 
Engine1b_analytic) do not inherit from the idealized 
base model (Engine1a), but from a completely 
independent new partial model (Engine1bBase). The 
reason can be only understood by an investigation 
starting from the final analytic model: it introduces the 
jointRPP component, which encapsulates an analytic 
solution for original engine components. Thus, the 
final solution cannot extend the idealized start-design 
because it has to replace parts of the start-design’s 
component network with something whose incremental 
design is the actual task. Engine1bBase was introduced 
to consistently configure at least the common 
components of models considering the gas force of the 
cylinder. But Engine1bBase is completely artificial: it 
cannot be simulated, its components are hanging in the 
air and it has nothing in common with the idealized 
model that was the original starting point for designing 
the engine. Quiet contrary it is the result of an inversed 
engineering process, taunting the natural design order. 



Modelica language extensions for practical non-monotonic modelling: on the need for selective model 
extension 

DOI Proceedings of the 13th International Modelica Conference 285 
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany 

  
 

 

Since Engine1bBase does not extend Engine1a – in 
fact cannot – the obvious question is if the idealized 
and gas force incorporating models are at least 
consistently configured. This is an important issue 
because Engine1bBase is a partial model-copy of 
Engine1a; it is not obvious if differences are intentional 
or just copy-and-paste errors that slipped in throughout 
revisions. As it turns out there is a plethora of 
configuration differences however. First, the inertias 
are configured differently; likewise r of cylPosition is 
inconsistent. Second, the a-connector of the piston is 
connected with b of the cylinder in Engine1a but with 
Rod3.a in Engine1b. But most confusingly, the bearings 
B1 and B2 are switched in Engine1b compared to 

Engine1a. This is a tricky change to comprehend, since 
one of the bearings must break the kinematic-loop of 
the multi-body system; and the question is if turning 
them was required due to integration or numerical 
issues. As far as we can say that is not the case; 
Engine1b can be simulated with the bearings turned 
back without problems in Dymola. To make confusion 
complete, Rod.r and Rod2/Rod1.r are inversed between 
Engine1a and Engine1bBase/Engine1b (r = {0, -0.2, 
0} vs. {0, 0.2, 0}) and must be turned to be 
consistent with the bearings switch. Although the sum 
of changes is correct, they are hard to comprehend. The 
incremental design of the engine is obscured behind a 
wall of model copying and modifications. 

         
 
 

 

Figure 4. One cylinder engine scenario (current standard library solution). 

                       (a) idealized start-model (Engine1a)                   (b) artificial gas force base-model (Engine1bBase) 

                 (c) gas force intermediate-model (Engine1b)                       (d) analytic final-model (Engine1b_analytic) 
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The alternative implementation of Engine1b and 
Engine1b_analytic based on selective extensions is 
much clearer. It is shown in Figure 5. Note the increase 
of diagram consistency; one can clearly see how 
starting from Engine1a the design is step-wise refined. 
The reason is that each design after the idealized start-
model now inherits the diagram of the previous. 
Another advantage is that intentional modifications are 
evident. Consider for example the selective extension 
to implement Engine1b: 

 

extends …MultiBody.Examples.Loops.Engine1a( 
    Cylinder(useAxisFlange = true), 
    Inertia( 
      J = 0.1, 
      phi(fixed = true, start = 0.001), 
      w(fixed = true, start = 0)), 
    cylPosition(r = {0.15,0.55,0})); 
for each extends 
  break connect(B2.frame_a, Piston.frame_b); 
  break connect(B1.frame_b, Rod.frame_b); 
  break connect(Rod.frame_a, B2.frame_b); 
end for each extends; 
// Add Rod3, Rod1 and gasForce and connect them… 

 

The configuration differences to Engine1a can now be 
encapsulated in modifications as used to. Also the 
implementation of Engine1b_analytic is straight: 

 

extends Engine1b; 
for each extends 
  break Cylinder; 
  break B2; break B1; break Rod1; break Rod3; 
end for each extends; 
// Add the analytic solution and connect it… 

 

The components comprised by the analytic solution are 
just replaced by it. Altogether, the new solution is 
much more consistent; changes like the unintended 
bearings switch and rod turning cannot just slip in. 

As final challenge one could lift the engine to a 
component as shown in Section 4.1. Its fixed inertia, 
used for “startup”, is problematic however. If used as 
component, an external inertia driven by the engine 
will be given instead. To that end, the inertia must be 

replaced by a flange-connector as shown in Figure 6 
(a); the resulting engine component can be combined 
with the coupled clutch component of Section 4.1 to a 
simple powertrain as shown in Figure 6 (b). 

 

 

Figure 6. Simple powertrain of engine and clutches. 

5 Alternative designs 
The proposed selective model extension is just a first 
step towards non-monotonic modelling in Modelica. Its 
final definition is open for discussion. 

First of all, constraint (5) of Section 3.3.2 might be 
controversial; instead of a single for each extends 
block, several could be permitted. Deselections could 
be aligned with the extends clauses they deselect 
elements from. For example, the extends clause of 
Figure 2 (b) could look like (assuming the cut-off 
frequency of the filter has to be modified as well) 

 

extends SMEE_Rectifier_Sampled( 
  break voltageController, 
  break setPointGain, 
  filter(f_cut = 15)); 
 

Thus, all modifications and deselections regarding a 
base-model could be grouped with the respective 

     

Figure 5. One cylinder engine scenario (proposed selective extension solution). 
    (a) Engine1a (existing MSL solution)              (b) new Engine1b solution             (c) new Engine1b_analytic solution 

(a) Engine1b_analytic component (excerpt) 

(b) composition of engine component and clutches 
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model extension. An advantage of aligning 
deselections with extends clauses is, that only elements 
of a specific base-model are excluded from inheritance. 
Of course, this gives rise to the question of consistency 
in case similarly named elements exist in several base-
models; should the deselection of all be enforced or is 
it fine to deselect only a subset? The proposed 
semantic of for each extends always deselects all 
elements sharing a name, such that common base-
model elements are consistently deselected; selection 
of a specific namesake requires its deliberate 
reintroduction, avoiding otherwise easy to miss indirect 
selections (indirect because the actually selected 
element is implicitly given by deselecting namesakes). 

Another open issue is how fine-grained connections 
can be deselected. The definition of “matching” in 
Section 3.3.1 (c) is a very simple equivalence test just 
comparing the syntactic structure of the component 
references selecting the connected elements; the 
proposed semantic always deselects the complete 
matching connection. Since connectors can be 
hierarchical structured, including array elements, one 
could imagine more fine-grained deselections to 
rearrange parts of a structured base-class connection. 
Partial deselections of a structured connection could 
for example unlink only certain of its nested array and 
component elements. The graphical representation and 
editing of such deselections would be problematic 
however, since the structure of connections is not 
visible in Modelica’s current diagram layer design. 

Another limitation of the proposed solution is that 
only base-model elements can be deselected, but not 
their nested elements. Considering the crosscutting 
nature of Modelica Synchronous, qualified deselection 
might be very useful for synchronous adaptation. Like 
for structured connections however, again 
diagrammatic presentation and editing of nested 
component deselections would be problematic. 

It is worthwhile to note that a relaxation of 
replaceable, by assuming all components are 
implicitly declared replaceable without type 
constraints, is insufficient for many cases handled by 
selective model extension. The problem is that 
redeclare cannot be used to consistently replace a 
network of components, as for example required to 
integrate the off-the-shelf induction machine controller 
of Figure 2 (b), where several original components 
must be removed, including their connections. To 
remove components in terms of re-declarations also is 
very cumbersome, not to speak of the consequences for 
the diagram layer which becomes cluttered with 
components representing actually removed and 
therefore not existing model parts that – quiet contrary 
– should not be shown at all. 

Also the idea that all declarations and connections 
are implicitly conditional looks unsuitable; the 
parametric referencing for enabling and disabling 

would be tedious. The proposed selective model 
extension comprises this approach, just the other way 
around: instead of declaring everything conditional, it 
deselects by extension when actually required. 

6 Conclusions 
Engineering processes are typically not monotonic in 
terms that everything of an old design is taken when 
developing a new; some parts may be deliberately 
excluded and not present in the derived design. In 
terms of physics modeling in Modelica, such non-
monotonic model variations are model-extensions with 
some original base-model features excluded from 
inheritance. Unfortunately, Modelica 3.4 is missing 
convenient means for structural non-monotonic 
modelling, which is a serious deficit the proposed 
selective model extension solves. Using selective 
extensions, no copying, changes or deliberate 
preparations on models are required to derive well-
defined variants not preserving all of the original 
model structure. The presented concepts suffice to 
conveniently adapt models – including the examples of 
the Modelica Standard Library – for different 
synchronous application scenarios. And as shown in 
Section 4, selective model extension is also beneficial 
for a more natural engineering process with 
refinement-based model variation and adaptation. 
Artificial intermediate models, without physics 
simulation meaning, and system variation 
inconsistencies can be avoided; and non-monotonic 
interface adaptations required for cross-library 
integration incorporated. Particularly the latter will 
likely become an important future challenge, 
considering the likelihood of interface incompatibilities 
between libraries tends to increase with the success of 
the Modelica community and respective growing 
number of library suppliers. Another promising 
application area for selective model extension is model 
testing, particularly systematic fault introduction to 
simulate non-nominal behavior. The idea is to weave 
error sources into existing models, like noise-
components intercepting a connection. Using selective 
extensions, the tested models do not have to be 
specifically prepared for fault injection; system parts 
can just be removed from inheritance and replaced by 
faulty – or even mock-up versions using external table-
data – to inject misbehavior and configure the 
environment of error scenarios. 
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7 Appendix A 
The following list is a rough estimation of examples of 
the Modelica Standard Library 3.2.2 that might be of 
interest for synchronous adaptation; about 60 existing 
continuous models have been identified. As criteria to 
consider a model relevant for synchronous adaptation, 
the containment of components modelling a controller 
has been chosen; further only examples – i.e., models 
extending Modelica.Icons.Example – have been 
considered. The potential examples of interest are (the 
actual example models are highlighted green): 

 

Blocks 
  Examples 
    PID_Controller 
    NoiseExamples 
      ActuatorWithNoise 
Electrical 
  Machines 
    Examples 
      AsynchronousInductionMachines 
        SwitchYD 
        AIMC_Inverter 
        AIMC_Conveyor 
        AIMC_withLosses 
      SynchronousInductionMachines 
        SMR_Inverter 
        SMPM_Inverter 
        SMPM_CurrentSource 

        SMPM_VoltageSource 
        SMPM_Braking 
        SMEE_Generator 
        SMEE_LoadDump 
        SMEE_Rectifier 
  PowerConverters 
    Examples 
      ACDC 
        Rectifier1Pulse 
          Thyristor1Pulse_R 
          Thyristor1Pulse_R_Characteristic 
        RectifierBridge2Pulse 
          HalfControlledBridge2Pulse 
          ThyristorBridge2Pulse_R 
          ThyristorBridge2Pulse_RL 
          ThyristorBridge2Pulse_RLV 
          ThyristorBridge2Pulse_RLV_Characteristic 
          ThyristorBridge2Pulse_DC_Drive 
        RectifierCenterTap2Pulse 
          ThyristorCenterTap2Pulse_R 
          ThyristorCenterTap2Pulse_RL 
          ThyristorCenterTap2Pulse_RLV 
          ThyristorCenterTap2Pulse_RLV_Characteristic 
        RectifierCenterTapmPulse 
          ThyristorCenterTapmPulse_R 
          ThyristorCenterTapmPulse_RL 
          ThyristorCenterTapmPulse_RLV 
          ThyristorCenterTapmPulse_RLV_Characteristic 
        RectifierBridge2mPulse 
          HalfControlledBridge2mPulse 
          ThyristorBridge2mPulse_R 
          ThyristorBridge2mPulse_RL 
          ThyristorBridge2mPulse_RLV 
          ThyristorBridge2mPulse_RLV_Characteristic 
          ThyristorBridge2mPulse_DC_Drive 
        RectifierCenterTap2mPulse 
          ThyristorCenterTap2mPulse_R 
          ThyristorCenterTap2mPulse_RL 
          ThyristorCenterTap2mPulse_RLV 
          ThyristorCenterTap2mPulse_RLV_Characteristic 
      DCAC 
        SinglePhaseTwoLevel 
          SinglePhaseTwoLevel_R 
          SinglePhaseTwoLevel_RL 
        MultiPhaseTwoLevel 
          MultiPhaseTwoLevel_R 
          MultiPhaseTwoLevel_RL 
      DCDC 
        ChopperStepDown 
          ChopperStepDown_R 
          ChopperStepDown_RL 
        HBridge 
          HBridge_R 
          HBridge_RL 
          HBridge_DC_Drive 
Magnetic 
  QuasiStatic 
    FundamentalWave 
      Examples 
        BasicMachines 
          InductionMachines 
            IMC_Inverter 
          SynchronousMachines 
            SMPM_CurrentSource 
            SMR_CurrentSource 
Mechanics 
  MultiBody 
    Examples 
      Systems 
        RobotR3 
          oneAxis 
          fullRobot 
Fluid 
  Examples 
    PumpingSystem 
    DrumBoiler 
      DrumBoiler 
    ControlledTankSystem 
      ControlledTanks 
    AST_BatchPlant 
      BatchPlant_StandardWater 
    TraceSubstances 
      RoomCO2WithControls 
Thermal 
  HeatTransfer 
    Examples 
      ControlledTemperature 
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