
Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 277
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

Modelica language extensions for practical non-monotonic modelling: on the need
for selective model extension
Bürger, Christoff

277

Modelica language extensions for practical non-monotonic
modelling: on the need for selective model extension

Christoff Bürger1
1 Dassault Systèmes AB, Sweden, Christoff.BUeRGER@3ds.com

Abstract
A Modelica language extension for structural non-
monotonic model variation is presented. It enables
selective model extension: the well-defined refinement
of models by deselecting components and connections
not of interest or inappropriate for a new design. The
need for such variations is explained by the example of
Modelica Synchronous, whose adaptation is suffering
from crosscutting synchronous decompositions that
cannot be anticipated when continuous models are
designed; instead, contradicting model structure has to
be removed when an actual sampling is desired.
Besides synchronous, further applications for selective
model extension are investigated using our prototype
implementation in Dymola.
Keywords: Modelica, model variation, synchronous

1 Introduction
Of key importance for Modelica is model variation
support, enabling simulation of design alternatives and
their step-wise refinement from idealistic prototypes to
physically-detailed solutions. To that end, Modelica
provides many different abstraction and variation
techniques, like model extension, replaceable
components, parameters and component modifications.

Having a strong heritage from object-oriented
programming however, Modelica’s model variation
constructs are monotonic with respect to model
structure because components, connections or
equations can only be added but not removed when
extending models. An unfortunately overlooked
consequence of flatting is however, that such a
structural-monotonic type-strictness, as known from
class inheritance in traditional strongly typed object-
oriented programming languages like Java or C++, is
not required in Modelica. In Modelica, models are
flattened before simulation. Flattening essentially
reduces the design space of a set of models to a fixed
number of instances according to a given
parameterization and replaces the resulting instances
with their corresponding fixed equation system
(Modelica Association, 2017). The difference to
traditional strongly typed object-oriented programming
is striking: all instances are known before runtime,
such that they can be statically constructed. There
exists no runtime control-flow in Modelica that may

cause different instantiations of entities; dynamic
dispatch is not required, ultimately neglecting object-
oriented polymorphism and the type-system
restrictions that typically come with it (Wegner, 1987;
Knudsen 1993)1. As a consequence, Modelica’s current
restriction that sub-models must inherit all components
and connections of their base-models when extending –
that model extension must be monotonic with respect
to model structure – can be dropped.

Leveraging on this observation, the paper presents a
new Modelica-language extension for non-monotonic
modelling: selective model extension. Selective model
extension can be used to exclude components and
connections in a well-defined way from inheritance
when extending models. Its semantic can be fully
understood in terms of model-diagram edits, such that
tools can support a convenient graphical user interface
for structure-wise non-preserving model variation. The
main contribution of selective model extension
therefore is to enable unforeseen structural variability
without requiring deliberately prepared base-models.

The paper starts with an evaluation on the need for
non-monotonic model variation in Modelica (Section
2). To that end, the application of Modelica
Synchronous (Elmqvist et al, 2012; Otter et al, 2012)
to refine continuous models for discrete use-cases is
chosen which requires non-monotonic modeling to
handle the crosscutting clock-partitions of different
synchronous designs. Based on the non-monotonic
modeling requirements elaborated throughout that
discussion, an exact syntax and semantic for selective
model extension is presented (Section 3). A
demonstration of general practical modelling-benefits,
not only for Modelica Synchronous, follows (Section
4). A prototype implementation in Dymola is used on a
sophisticated example taken from the Modelica
Standard Library to show how selective model
extension enables model-development along the lines
of real engineering processes – i.e., in terms of step-
wise model variation and adaptation – avoiding model
variation inconsistencies and artificial intermediate
models without physical meaning.

1Object-oriented languages typically require monotony of inheritance to
ensure the functionality of entities is well-defined for all usage-contexts,
independent of control-flows determining instantiation. If sub-classes
could drop base-class functionality – i.e., inheritance could be non-
monotonic – runtime errors are possible whenever base-class
functionality is called on sub-class objects. Static type-systems enforce
monotonic inheritance to avoid such errors in the first place.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

278 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

2 Motivation: Modelica Synchronous
adaptation challenges

This section motivates the need for non-monotonic
model variation. As a practical problem the potential of
Modelica Synchronous (Elmqvist et al, 2012; Otter et
al, 2012) for existing examples of the Modelica
Standard Library is investigated. The challenge is to
enable use-case driven partial sampling of continuous
systems without having to change them and with
reasonable adaptation workload. As will be shown, the
crosscutting of synchronous decompositions cannot be
handled by monotonic model variation however; a
refinement-based non-monotonic adaptation is
required, giving rational for the selective model
extension proposed in Section 3.

The modelling problems presented in the following
are not Modelica Synchronous specific; they can be
generalized as will be shown in Section 4.

2.1 Synchronous potential of the MSL
The Modelica Standard Library 3.2.2 has about 60
existing continuous example test-models with
controllers whose discrete modelling might be of
interest (cf. Appendix A for the used selection criteria).
A lot of these test-models share the same controller,
maybe differently parameterized. For example, the 35
models of Electrical.PowerConverters.Examples
interesting for synchronous modelling share just five
controllers defined in PowerConverters.ACDC.Control
and PowerConverters.DCDC.Control. The remaining 25
test-models are much more heterogeneous however,
making each a potentially worthwhile candidate for
synchronous adaptation.

2.2 Objective: synchronous adaptation of
continuous models via refinement

To adapt 60 test-models for synchronous is a major
effort, in particular coordinating so many authors from
different engineering domains. Involvement of the
original authors therefore should be minimized and
mostly only be required to ensure that the controllers of
the existing continuous test-models are relevant for
sampling from a domain perspective. After all, the
existing test-models as such – their purely continuous
modelling – are mature and useful.

To that end, sampling of their controllers should be
an independent task, not requiring changing the
original models. Instead, samplings should be
introduced in terms of derived test-models that only
add discrete partitions, i.e., by refinements adding
samples, holds and clocks with respect to the
components of an existing model. Such derived tests-
models would be partially-discrete instances of their
continuous originals, ultimately enabling validation
and investigation of different samplings.

The original test-models would stay unchanged and
cannot be corrupted by synchronous adaptation errors;
their correctness is assured from previous model
reviews and testing. Code duplication and
inconsistencies are avoided and upcoming library
changes eased. Ideally, future changes of a continuous
model are either automatically incorporated in its
derived partially-discrete models (in case the structural
interface between continuous and discrete parts is not
influenced, i.e., there are no new controller inputs or
outputs), or result in translation errors of its derived
partially-discrete models (denoting that the controller
interface changed and samplings must be adapted).

To support such an iterative development process
with seamless and incremental design from a
continuous whole system model to different partially
discrete variations via model-refinement is of uttermost
importance for the success of Modelica Synchronous;
it enables the incorporation and automatic change
propagation of late continuous and discrete design
changes and would be a distinctive Modelica feature
compared to common block diagram based languages
for causal-modelling of controllers.

2.3 Problem: monotony of model extension
To derive a partially-discrete model by sampling parts
of an existing continuous model requires the
introduction of samples, holds, clocks and their
respective connections such that the derived model has
a consistent clock partitioning. Modelica’s existing
model extension via extends is sufficient to add all
required synchronization components. The derived
model can also add the connections combining the
sample and hold operators of the intended discrete
model partitions with the model parts remaining
continuous. The resulting derived model is inconsistent
however, because it comprises all components of the
original continuous model, particularly the old
connections bypassing the sample- and hold-interface
just introduced; clock-partitioning of the derived model
fails due to the structural singularities resulting from
having contradicting sampled and non-sampled
connections. Since model extension via extends can
only add components, modify the value of inherited
components or exchange components deliberately
prepared for variability via replaceable, it is
impossible to fix clock-partitioning errors due to
inherited connections and therefore consistently
incorporate samplings.

2.4 Problem: prescient modelling
To enable sampling via model extension,
parametrization or modification requires deliberate
preparations of model parts that might become subject
to sampling. For example, models could be prepared
for sampling by pushing the parts constituting
controllers into separate models and referencing them

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 279
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

as replaceable components well-suited for modification
or by using conditional declarations instantiating a
continuous or discrete design depending on
parameterization. Such workarounds are in conflict
with our objectives however, as they anticipate specific
samplings before their actual need, implying changes
of the original model when the need for a new specific
sampling actually arises. Deliberate preparations of
models to enable future samplings naturally only
enable the prepared samplings, i.e., specific discrete
use-cases. To anticipate all possible samplings of
continuous model parts that might be of interest in
future discrete use-cases is impractical however.

2.5 Problem: crosscutting synchronous
decompositions

The design of controllers significantly varies
depending on available sensor information (varying
control input signals) and control-task splitting
(varying model parts constituting controllers, for
example due to independent asynchronous control vs.
synchronous cascade-control with different sub- or
super-samplings). Typically, many reasonable
synchronous designs exist, each resulting in a specific
clock partitioning. The clock partitions of different
synchronous designs are likely in conflict however.

Figure 1. Induction machine with voltage controller.

Consider for example the electrical excited
synchronous induction machine of the Modelica
Standard Library presented in Figure 1
(Electrical.Machines.Examples.SynchronousInducti
onMachines.SMEE_Rectifier). Five different
synchronous designs immediately come to mind for its
voltage controller: (1) a fat controller, comprising not
only the gain and PI controller but also filter, (2) a

design with the filter being independent, either as (2.1)
a separate asynchronous sampled system or (2.2) not
sampled at all and (3) a cascade control, with the filter
being (3.1) sub-sampled, in case set point changes are
more critical than filtering the current voltage, or (3.2)
super-sampled, in case the filter implementation
requires higher sample rates than the rest of the
controller. The clock partitions of all five variants are
in mutual conflict although each, in itself, is sound.

Important for our investigation is that Modelica
models already have a dominant decomposition with
respect to their component hierarchy (network of
interconnected hierarchical components); and it is that
very hierarchy in whose terms model variation is
defined using parametrizations, modifications and re-
declarations, whereas model extension always
preserves it. Clock partitioning however is about
decomposing a model according to its differently
clocked parts. Thus, even if a model’s structure is
aligned with some future synchronous design, it will be
in conflict with other designs. Clock partitioning
crosscuts the natural composition of physical systems
as hierarchical component networks2.

2.6 Solution: non-monotonic extension
To incorporate a specific sampling into an existing
model means to modify its component network
according to the sampling’s crosscut, i.e., to change the
model’s structure at the intersection points of clock
partitions and further control-design adaptations.
Intersection points of clock partitions correspond to
connections that must be removed; instead respective
samples and holds are added, connecting the clock
partitions. Control-design adaptations usually
correspond to components that have to be removed
because the new control-design is structural different
duo to changed sensor and actuator usage (for example
the filter and gain of Figure 1 may not be required by a
third party library controller). All such changes are
well-defined by removing connections and components
that are superfluous and replaced by the intended
synchronous design. The required refinement can be
defined as ordinary model extension with parts of the
original model excluded from inheritance, ultimately
enabling structural non-monotonic changes.

3 Selective model extension proposal
This section presents a concrete proposal to enable
non-monotonic modelling in Modelica. The proposed
selective model extension enables the deselection of

2Implementation techniques for system parts cross-cutting a dominant
component hierarchy are subject of aspect-oriented programming
(Kiczales et al, 1997; Tarr 1999). Particularly object-oriented
programming language extensions enabling crosscutting implementation
are well-investigated. The proposed selective model extension can be
seen in that tradition; it is Modelica-specific however, since it depends
on static instantiation via model-flattening as explained in Section 1.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

280 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

connections and components when extending models.
To start with, a simple sampling example sketches the
new language concepts. The definition of actual syntax
and semantic follows.

3.1 Selective model extension example
Consider again the controlled induction machine
presented in Figure 1. Figure 2 presents three different
synchronous control designs for it, implemented in the
following using selective model extension to handle
their structural non-monotonic variation.
(a) Simple sampling scenario: A straightforward
synchronous control design is to just sample the control
components of the original example. To that end, the
connections between voltageSensor and filter,
speedSensor and setPointGain and voltageController
and excitationVoltage have to be replaced with
likewise-connected samples and holds. Using selective
model extension, the implementation of Figure 2 (a) is:

model SMEE_Rectifier_Sampled
extends SMEE_Rectifier;

/* PART 1: Drop “outdated” continuous parts. */
 // Exclude connections from inheritance:
 for each extends
 break connect(voltageSensor.v, filter.u);
 break connect(speedSensor.w,
 setPointGain.u);
 break connect(voltageController.y,
 excitationVoltage.v);
 end for each extends;
/* PART 2: Introduce sampling. */
 // Introduce clock, samples and hold and…
 PeriodicRealClock clock(
 period = 0.001,
 useSolver = true);
 SampleClocked sample_u_m;
 Sample sample_u_s;
 Hold hold_y;
equation
 // …connect them:
 connect(clock.y, sample_u_m.clock);

 connect(voltageSensor.v, sample_u_m.u);
 connect(sample_u_m.y, filter.u);
 connect(speedSensor.w, sample_u_s.u);
 connect(sample_u_s.y, setPointGain.u);
 connect(voltageController.y, hold_y.u);
 connect(hold_y.y, excitationVoltage.v);
end SMEE_Rectifier_Sampled;

The new sampling-related components – the clock,
sample and hold and their connections with inherited
components – are introduced as used to and are subject
to normal Modelica 3.4 semantic (Part 2). Also syntax
and semantic of the extends clause are as used to,
except that the for each extends block modifies the
set of features the extends clause defines to be
inherited (Part 1). Each break connect clause within a
for each extends block removes the respective
connection from the set of features the model inherits.
Note the plural form clauses, implying that for each
extends modifies all extends clauses of a model. In
our case, just the extension from SMEE_Rectifier is
modified, excluding the ingoing connections of filter
and setPointGain and the outgoing connection of
voltageController from inheritance; the deselections
are break connect(voltageSensor.v,filter.u), break
connect(speedSensor.w,setPointGain.u) and break

connect(voltageController.y,excitationVoltage.v).

(b) Off-the-shelf controller scenario: Another
reasonable design is to use an off-the-shelf controller
provided by a specialized library, as shown in Figure 2
(b). To that end, the original control components have
to be replaced. Note the plural; not a single
replaceable component is changed, but the complete
component network constituting the controller.
Assuming the new controller still requires the filtering
of voltage, only voltageController and setPointGain
have to be removed. Using a selective model extension
of scenario (a), the implementation of Figure 2 (b) is:

Figure 2. Three control scenarios for the induction machine of Figure 1 (controller only excerpts).

 (a) simple sampling (b) off-the-shelf controller (c) off-the-shelf dampening-controller

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 281
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

model SMEE_Rectifier_ExternalController
 extends SMEE_Rectifier_Sampled;
// Remove original controller with connections:
 for each extends
 break voltageController;
 break setPointGain;
 end for each extends;
// Introduce the new controller…
 replaceable ExternalController v_controller;
equation
// …and connect it:
 connect(filter.y, v_controller.u_m);
 connect(v_controller.y, hold_y.u);
 connect(sample_u_s.y, v_controller.u_s);
end SMEE_Rectifier_ExternalController;

The original controller and gain are excluded from
inheritance via break voltageController and break
setPointGain. Deselecting a component automatically
deselects all its connections. Thus, the only thing to do
besides deselecting the original control components is
to integrate the new controller reusing the sampling
inherited from scenario (a).

(c) Off-the-shelf dampening-controller scenario:
Finally, an off-the-shelf controller with specialized
dampening of its input voltage can be used as shown in
Figure 2 (c). In that case, the original filter is not
required. The implementation based on scenario (b) is:

model SMEE_Rectifier_DampeningExternalController
 extends SMEE_Rectifier_ExternalController(
 redeclare DampeningController v_controller);
 for each extends
 break filter;
 end for each extends;
equation
 connect(sample_u_m.y, v_controller.u_m);
end SMEE_Rectifier_DampeningExternalController;

Conclusions: Scenarios (a) to (c) demonstrated the
consecutive synchronous adaptation of a continuous
model. Each refinement step required structural non-
monotonic changes in terms of removing superfluous
connections and components inappropriate for a more
sophisticated control design. Using selective model
extension, the respective synchronous adaptations are
possible without changing the original continuous
model, ensuring configuration consistency of the
controlled system when comparing the synchronous
designs one another. Also diagrammatic consistency is
improved; after all, the diagrams of Figure 2 are
derived from Figure 1 by normal extends semantic and
our Dymola implementation of deselections.

3.2 Syntax: selective extension clauses and
inheritance modifications

Selective model extension as presented in Section 3.1
requires rule-additions to Modelica’s context-free
grammar. The changes required are very limited
however. Only an additional alternative for element
(cf. Appendix ”B.2 Grammar“ of the Modelica 3.4
specification) has to be added:

element :
 import-clause |
 extends-clause |

 selective-extension-clause | // new
 [redeclare]
 [final]
 [inner] [outer]
 ((class-definition | component-clause) |
 replaceable (
 class-definition | component-clause)
 [constraining-clause comment])

whereas selective-extension-clause is:

selective-extension-clause :
 for each extends
 { inheritance-modification “;” }
 end for each extends

and inheritance-modification is:

inheritance-modification :
 break connect-clause | // Connection and…
 break IDENT // …component deselection.

with connect-clause and IDENT already well-defined in
the specification. No new keywords are introduced.
The new context-free derivations for each extends,
break connect and break IDENT are syntax errors in
current Modelica. As a consequence, the proposed
selective model extension never changes the semantic
of existing valid Modelica 3.4 models. Models that are
syntactically invalid could theoretically become valid
however, but chances are extremely low3.

3.3 Semantic: terminology, well-formedness
and interpretation

An important criterion of selective model extension is
to ensure applications are meaningful. A selective
extension is meaningful when all its modifications of
the set of inherited elements are unambiguous and
applicable, in which case it is called well-formed.
Selective extensions that are not well-formed are
modelling errors; they are meaningless, i.e., without
unique interpretation defining the result of their
application. The rest of this section defines well-
formedness and interpretation for the proposed syntax.

3.3.1 Terminology
To ease further discussion, we define the following
terms (words embraced by parenthesis are optional,
only improving readability; the term “if X is evident”
denotes “if X is already well-defined by context (i.e.,
specific) or not of particular interest (i.e., generic)”; the
term “derivation” denotes a context-free derivation
according to the syntax specified in Section 3.2):

(a) Context of selective extensions: A selective-
extension-clause derivation S within a model A with
arbitrary many extends clauses E1, … En, that extend

3It is not likely that a syntax error happens to satisfy the proposed
syntax. It is even less likely the respective model will further satisfy the
semantic constraints explained in Section 3.3.2; and, due to deselections,
it is close to impossible that it is valid considering existing Modelica
well-formedness constraints like “referenced components must be
declared” and “the system of equations must be well-defined”.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

282 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

models M1, … Mn respectively, is called a “selective
(model) extension of M1, … Mn”; if M1, … Mn are
evident, just “selective (model) extension”. E1, … En
are called “(local) extends-clauses of A”. S is called
“extends-modification of A”. If A is evident, we just
speak of “local extends-clauses” and “extends-
modification”. We say “S is local to A”, “E1, … En are
local to A”, “E1, … En are local to S” and vice-versa;
and we call an “α local to β” a “(local) α of β” and
vice-versa. We further say “S modifies E1, … En” and
“A selectively extends M1, … Mn with respect to S”. If
M1, … Mn or S are evident, we just say “A selectively
extends”. This terms are called “context of S”; if S is
evident, just “selective extension context”.

(b) Context of deselections: A selective extension S
is a block; its body consists of the inheritance-
modification derivations m1, … mn applied throughout
the derivation of S. Each inheritance-modification
derivation is called a “deselection of S”; if S is evident,
just “deselection”. The set m1, … mn are the
“deselections of S”; if S is evident, just “deselections”.

We distinguish two types of deselection:
(b.1) break connect-clause derivations are called

“connection deselection”
(b.2) break IDENT derivations are called

“component deselection”

If a deselection type is evident, we just say “element”
instead of connection or component.

The subset of connection deselections of the
deselections of S are called “connection deselections of
S”; if S is evident, just “connection deselections”. The
deselections of S that are not connection deselections
are called “component deselections of S”; if S is
evident, just “component deselections”.

The relations defined for S in (a) – like extends-
clauses, extends-modification, modifies etc. – also hold
for the deselections of S. We therefore can speak of the
context of a deselection, defined by the model it is
local to and the local extends clauses it modifies; and it
is true by definition that “deselections are extends-
modifications of their local model and models
selectively extend with respect to their deselections”.

(c) Extent of selective extensions: Let Iextends be the
set of elements the local extends clauses of a model A
define to be inherited; let connection elements be
represented by their respective connect-clause
derivations in Iextends and components by IDENT
derivations, i.e., their name. We call Iextends the
“preselective-extent of A”. Let Dconnection be the set of
connection deselections of A and Dcomponent the set of
component deselections. We call two connections
connect(a1, b1) and connect(a2, b2) “matching” if
either a1 = a2 b1 = b2 or a1 = b2 b1 = a2.

We call an inherited connection ci Iextends “extent
of a (connection) deselection” d = break cd Dconnection
if cd and ci are matching and say “ci is deselected due

to d” and “d deselects ci”; if d is evident we just say “ci
is deselected”, and if ci is evident we just speak of a
“deselected T (connection)” whereas T is the connector
type of ci. If also T is evident, we just speak of a
“deselected connection”.

We call an inherited component ci Iextends “extent
of a (component) deselection” d = break cd Dcomponent
if cd = ci and say “ci is deselected due to d” and “d
deselects ci”; if d is evident we just say “ci is
deselected”, and if ci is evident we just speak of a
“deselected T (component)” whereas T is the
component type of ci. If also T is evident, we just speak
of a “deselected component”.

Let ci be a component deselected due to a
deselection d. We call the set D = ci {c Iextends | c is
connection of ci} the “transitive-extent of d”; if d is
evident, we just speak of a “transitive-extent”. For each
c D \ ci we say “c is indirectly-deselected due to d”;
if d is evident, we just say “c is indirectly-deselected”
and, if c is also evident, we speak of an “indirectly-
deselected connection”. Indirectly-deselected
connections are deselected connections. The transitive-
extent of a connection deselection is just its extent.

We call the union of the transitive-extents of the
deselections of A the “deselective-extent of A”. Let
Ideselected be the deselective-extent of A; we call the set
Iselected = Iextends \ Ideselected “selective-extent of A”; if A is
evident, we just speak of “preselective-”, “deselective-
” and “selective-extent”.

Colloquial usage: Whenever we emphasize the act of
modelling via introducing deselections for an element
or element type E, we use the term “deselection of E”
or “deselecting E”; if E is evident, we just speak of
“deselecting”. Likewise, we speak of “selection of E”
and “selecting E” for removing, or deliberately not
introducing, deselections for E.

3.3.2 Well-formedness
Five well-formedness constraints are proposed for
selective model extension. The following list also gives
a short rational for each constraint:

Constraint (1) Selective model extensions must be
element of a model or block (i.e., the enclosing scope
of a selective-extension-clause must be a class-
definition whose class-prefixes are derived to
model, block, partial model, or partial block; cf.
Appendix B.2.2 of the Modelica 3.4 specification).

Rational: Connector classes are prohibited to use
selective extension because their whole purpose is to
define common interfaces; deselection of connector-
components would essentially make the derived
connectors incompatible. Types are excluded for
similar reasons. Records are excluded to avoid runtime
errors due to instances queried for deselected fields.
Packages are excluded because they are used to define
a modelling environment with well-defined features; to
reduce availability of provided features contradicts

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 283
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

their purpose in the first place. Deselection of function
in- and out-puts is prohibited, because call-sites depend
on the applicability of a function’s interface.

Constraint (2) The extent of deselections is not
empty (i.e., for each deselection exists a local extends
clause that inherits the deselected element).

Rational: Selective extensions should be meaningful,
i.e., each of their deselections should be applicable.
The constraint also makes it impossible to deselect
beforehand, eliminating the risk that sub-models
accidentally miss future base-model improvements.

Constraint (3) Deselected components are not
modified by local extends-clauses.

Rational: Modifying a component and deselecting it
within the same model hints at a modelling error.

Constraint (4) Deselected elements are not final.4

Rational: final is deliberately introduced by
developers to prevent common model-configuration
errors due to further modifications; this naturally
encompasses modifications changing the existence of
final modified components. The constraint also
prevents the reintroduction of deselected final
components as non-finals.

Constraint (5) Models have at most a single
selective extension clause.

Rational: Since selective extension modifies all local
extends-clauses, it makes sense to collect all
deselections of a model within a single for each

extends block. Doing so avoids scattering of
inheritance modifications, ultimately increasing
readability of models.

These constraints can be checked just considering the
set of connections and components inherited due to
local extends-clauses; there is no need to mutually
compare the individual sets. Details, how inherited
elements are defined, particularly if base-models apply
other selective extensions, are not required.

Note that the proposed well-formedness constrains
do not prohibit extending models from reintroducing
components deselected. This is useful to solve
currently non-manageable multiple-inheritance
conflicts due to structural differences of base-models.

No further restrictions regarding the well-
formedness of equations are proposed. Deselection of
connections can result in structural non-singular
equation systems however; likewise deselected
components may result in base-model equations with
unresolved references. The fallback on default equation
well-formedness is important. It ensures the context of
selective extensions is sound; in practice, this means
that the “structural-holes” due to deselections must be

4Constraint (4) does not prohibit the deselection of components
containing final elements, as long as the deselected component itself
is not final.

properly fixed and invalidating base-model changes are
caught. Note that speaking of “structural-holes” is
reasonable, considering deselections are defined with
respect to diagram-wise clearly distinguishable model
parts; selective model extension is about the removal
of interconnected component networks. To accidentally
change model semantic not visible within the diagram
layer, like non-connection equations, is impossible. As
a consequence, deselection can be realized as graphical
edit-operations in the diagram layer of Modelica tools.

3.3.3 Interpretation
Given the terminology of Section 3.3.1 and the well-
formedness constraints of Section 3.3.2, defining an
interpretation for well-formed selective model
extensions is straightforward.

The objective of a selective extension is to exclude
elements from inheritance. To that end, one has to take
care of – colloquial speaking – three kinds of inherited
elements: (1) the elements inherited by a model’s local
extends clauses (i.e., inheritance as used to from
Modelica 3.4), (2) the elements excluded from this set
and (3) the resulting actually inherited elements. With
respect to Section 3.3.1, these sets are the preselective-,
deselective- and selective-extent.

The extent definitions of Section 3.3.1 are
constructive; first, the preselective-extent is derived,
based on it the deselective-extent, finally followed by
the selective-extent. Note that, the extents can be
empty for the definitions to hold. The deselective-
extent of a model without a selective extension is the
empty set; such a model’s selective-extent just is its
preselective. This characteristic significantly limits the
changes required in the existing Modelica specification
to incorporate selective model extension.

In the end, the interpretation of selective model
extension just boils down to the addition of the
terminology introduced in Section 3.3.1 and a single
modification of the Modelica 3.4 specification
regarding the definition of inherited elements; the new
definition is: “the inherited elements of a model are its
selective-extent”.

4 Advanced application scenarios
The applications of selective model extension
presented so far are all in the domain of Modelica
Synchronous. In the following, further applications,
with the focus on general advantages for modelling
from an engineering perspective, are investigated. To
that end, selective extension is used to redesign an
existing example scenario of the Modelica Standard
Library; doing so will reveal implementation-
shortcomings of the example and how non-monotonic
modeling can be used to avoid them. First however,
another important use case for selective model
extension is presented: to adapt whole system models
for further external or component usage.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

284 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

4.1 Component extraction example
Figure 3 presents the well-known coupled clutches
example of the Modelica Standard Library
(Mechanics.Rotational.Examples.CoupledClutches)
and two variations of it. The first variant prepares its
export as Functional Mockup Unit (FMU) that can be
distributed to third parties for simulation in non-
Modelica contexts (Modelica Association, 2014); the
second variant prepares the coupled clutches for usage
as component within further Modelica models. In both
cases, the fixed input stimuli of the original example
must be removed and replaced by respective input
connectors. The normal forces of the clutches just
become real inputs; the in- and outputs of the inertias
depend on usage however.

(a) original coupled clutches

(b) extracted FMU model based on (a)

(c) extracted component model based on (b)

Figure 3. Coupled clutches FMU/component extraction.
For FMU simulation, the input tau for the first inertia
is a torque and the output of the simulation is the
absolute angular velocity w of the fourth inertia J4;
thus, both are just real values. For component usage
however, one would like to stay with the flange
interface of the Modelica Standard Library for the in-
and output of the first and last inertias. Doing so
ensures proper flow-derivation of the cut-torques5.

5Because flow-variables – and therefore Modelica-like automatic flow-
value derivation – are not supported in the FMI 2.0 standard, users of the
FMU-component of Figure 3 (b) have to be careful that torques are
correctly modeled in application contexts of the FMU; in that sense the
FMU-component is less flexible compared to the Modelica-component
of Figure 3 (c). On the other hand, the flow-variables of the flange-
interface are the reason why the Modelica-component is unsuitable for
FMU-export and usage in external simulations.

Both adaptations are straightforward using selective
extensions. For FMU extraction the implementation is

extends …Rotational.Examples.CoupledClutches;
for each extends
 break sin1;break sin2;break step1;break step2;
end for each extends;

accompanied by introducing and connecting the in- and
output normal forces, torque and velocity as shown in
Figure 3 (b). When extracting a component however,
the torque adapter becomes superfluous since a proper
flange input will be provided. In terms of the FMU
model, the respective selective extension is

extends CoupledClutches_FMU;
for each extends
 break torque; break fixed; break tau;
end for each extends;

this time accompanied by introducing and connecting
the in- and output flanges as shown in Figure 3 (c).

In conclusion, selective model extension enables to
extract a component model from a whole system model
and incorporate the usage-interfaces of future
application contexts. Doing so we know the extracted
component is working; after all it comes from a well-
tested, whole system model with proper simulation that
has just been lifted to a component on demand.

4.2 Domain-driven refinement example
Our final selective extension scenario is the step-wise
design of a one cylinder engine, as exemplified by the
Engine1a, Engine1b and Engine1b_analytic models in
package Mechanics.MultiBody.Examples.Loops of the
Modelica Standard Library. The basic idea is to design
a final analytic engine model starting from an idealized
model via one considering the gas force in the cylinder.
Figure 4 summarizes the current solution of the
standard library. There are several problems with it, all
due to the lack of non-monotonic modeling means.

The most obvious inconsistency is that the models
incorporating the cylinder’s gas force (Engine1b and
Engine1b_analytic) do not inherit from the idealized
base model (Engine1a), but from a completely
independent new partial model (Engine1bBase). The
reason can be only understood by an investigation
starting from the final analytic model: it introduces the
jointRPP component, which encapsulates an analytic
solution for original engine components. Thus, the
final solution cannot extend the idealized start-design
because it has to replace parts of the start-design’s
component network with something whose incremental
design is the actual task. Engine1bBase was introduced
to consistently configure at least the common
components of models considering the gas force of the
cylinder. But Engine1bBase is completely artificial: it
cannot be simulated, its components are hanging in the
air and it has nothing in common with the idealized
model that was the original starting point for designing
the engine. Quiet contrary it is the result of an inversed
engineering process, taunting the natural design order.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 285
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

Since Engine1bBase does not extend Engine1a – in
fact cannot – the obvious question is if the idealized
and gas force incorporating models are at least
consistently configured. This is an important issue
because Engine1bBase is a partial model-copy of
Engine1a; it is not obvious if differences are intentional
or just copy-and-paste errors that slipped in throughout
revisions. As it turns out there is a plethora of
configuration differences however. First, the inertias
are configured differently; likewise r of cylPosition is
inconsistent. Second, the a-connector of the piston is
connected with b of the cylinder in Engine1a but with
Rod3.a in Engine1b. But most confusingly, the bearings
B1 and B2 are switched in Engine1b compared to

Engine1a. This is a tricky change to comprehend, since
one of the bearings must break the kinematic-loop of
the multi-body system; and the question is if turning
them was required due to integration or numerical
issues. As far as we can say that is not the case;
Engine1b can be simulated with the bearings turned
back without problems in Dymola. To make confusion
complete, Rod.r and Rod2/Rod1.r are inversed between
Engine1a and Engine1bBase/Engine1b (r = {0, -0.2,
0} vs. {0, 0.2, 0}) and must be turned to be
consistent with the bearings switch. Although the sum
of changes is correct, they are hard to comprehend. The
incremental design of the engine is obscured behind a
wall of model copying and modifications.

Figure 4. One cylinder engine scenario (current standard library solution).

 (a) idealized start-model (Engine1a) (b) artificial gas force base-model (Engine1bBase)

 (c) gas force intermediate-model (Engine1b) (d) analytic final-model (Engine1b_analytic)

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

286 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

The alternative implementation of Engine1b and
Engine1b_analytic based on selective extensions is
much clearer. It is shown in Figure 5. Note the increase
of diagram consistency; one can clearly see how
starting from Engine1a the design is step-wise refined.
The reason is that each design after the idealized start-
model now inherits the diagram of the previous.
Another advantage is that intentional modifications are
evident. Consider for example the selective extension
to implement Engine1b:

extends …MultiBody.Examples.Loops.Engine1a(
 Cylinder(useAxisFlange = true),
 Inertia(
 J = 0.1,
 phi(fixed = true, start = 0.001),
 w(fixed = true, start = 0)),
 cylPosition(r = {0.15,0.55,0}));
for each extends
 break connect(B2.frame_a, Piston.frame_b);
 break connect(B1.frame_b, Rod.frame_b);
 break connect(Rod.frame_a, B2.frame_b);
end for each extends;
// Add Rod3, Rod1 and gasForce and connect them…

The configuration differences to Engine1a can now be
encapsulated in modifications as used to. Also the
implementation of Engine1b_analytic is straight:

extends Engine1b;
for each extends
 break Cylinder;
 break B2; break B1; break Rod1; break Rod3;
end for each extends;
// Add the analytic solution and connect it…

The components comprised by the analytic solution are
just replaced by it. Altogether, the new solution is
much more consistent; changes like the unintended
bearings switch and rod turning cannot just slip in.

As final challenge one could lift the engine to a
component as shown in Section 4.1. Its fixed inertia,
used for “startup”, is problematic however. If used as
component, an external inertia driven by the engine
will be given instead. To that end, the inertia must be

replaced by a flange-connector as shown in Figure 6
(a); the resulting engine component can be combined
with the coupled clutch component of Section 4.1 to a
simple powertrain as shown in Figure 6 (b).

Figure 6. Simple powertrain of engine and clutches.

5 Alternative designs
The proposed selective model extension is just a first
step towards non-monotonic modelling in Modelica. Its
final definition is open for discussion.

First of all, constraint (5) of Section 3.3.2 might be
controversial; instead of a single for each extends
block, several could be permitted. Deselections could
be aligned with the extends clauses they deselect
elements from. For example, the extends clause of
Figure 2 (b) could look like (assuming the cut-off
frequency of the filter has to be modified as well)

extends SMEE_Rectifier_Sampled(
 break voltageController,
 break setPointGain,
 filter(f_cut = 15));

Thus, all modifications and deselections regarding a
base-model could be grouped with the respective

Figure 5. One cylinder engine scenario (proposed selective extension solution).
 (a) Engine1a (existing MSL solution) (b) new Engine1b solution (c) new Engine1b_analytic solution

(a) Engine1b_analytic component (excerpt)

(b) composition of engine component and clutches

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 287
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

model extension. An advantage of aligning
deselections with extends clauses is, that only elements
of a specific base-model are excluded from inheritance.
Of course, this gives rise to the question of consistency
in case similarly named elements exist in several base-
models; should the deselection of all be enforced or is
it fine to deselect only a subset? The proposed
semantic of for each extends always deselects all
elements sharing a name, such that common base-
model elements are consistently deselected; selection
of a specific namesake requires its deliberate
reintroduction, avoiding otherwise easy to miss indirect
selections (indirect because the actually selected
element is implicitly given by deselecting namesakes).

Another open issue is how fine-grained connections
can be deselected. The definition of “matching” in
Section 3.3.1 (c) is a very simple equivalence test just
comparing the syntactic structure of the component
references selecting the connected elements; the
proposed semantic always deselects the complete
matching connection. Since connectors can be
hierarchical structured, including array elements, one
could imagine more fine-grained deselections to
rearrange parts of a structured base-class connection.
Partial deselections of a structured connection could
for example unlink only certain of its nested array and
component elements. The graphical representation and
editing of such deselections would be problematic
however, since the structure of connections is not
visible in Modelica’s current diagram layer design.

Another limitation of the proposed solution is that
only base-model elements can be deselected, but not
their nested elements. Considering the crosscutting
nature of Modelica Synchronous, qualified deselection
might be very useful for synchronous adaptation. Like
for structured connections however, again
diagrammatic presentation and editing of nested
component deselections would be problematic.

It is worthwhile to note that a relaxation of
replaceable, by assuming all components are
implicitly declared replaceable without type
constraints, is insufficient for many cases handled by
selective model extension. The problem is that
redeclare cannot be used to consistently replace a
network of components, as for example required to
integrate the off-the-shelf induction machine controller
of Figure 2 (b), where several original components
must be removed, including their connections. To
remove components in terms of re-declarations also is
very cumbersome, not to speak of the consequences for
the diagram layer which becomes cluttered with
components representing actually removed and
therefore not existing model parts that – quiet contrary
– should not be shown at all.

Also the idea that all declarations and connections
are implicitly conditional looks unsuitable; the
parametric referencing for enabling and disabling

would be tedious. The proposed selective model
extension comprises this approach, just the other way
around: instead of declaring everything conditional, it
deselects by extension when actually required.

6 Conclusions
Engineering processes are typically not monotonic in
terms that everything of an old design is taken when
developing a new; some parts may be deliberately
excluded and not present in the derived design. In
terms of physics modeling in Modelica, such non-
monotonic model variations are model-extensions with
some original base-model features excluded from
inheritance. Unfortunately, Modelica 3.4 is missing
convenient means for structural non-monotonic
modelling, which is a serious deficit the proposed
selective model extension solves. Using selective
extensions, no copying, changes or deliberate
preparations on models are required to derive well-
defined variants not preserving all of the original
model structure. The presented concepts suffice to
conveniently adapt models – including the examples of
the Modelica Standard Library – for different
synchronous application scenarios. And as shown in
Section 4, selective model extension is also beneficial
for a more natural engineering process with
refinement-based model variation and adaptation.
Artificial intermediate models, without physics
simulation meaning, and system variation
inconsistencies can be avoided; and non-monotonic
interface adaptations required for cross-library
integration incorporated. Particularly the latter will
likely become an important future challenge,
considering the likelihood of interface incompatibilities
between libraries tends to increase with the success of
the Modelica community and respective growing
number of library suppliers. Another promising
application area for selective model extension is model
testing, particularly systematic fault introduction to
simulate non-nominal behavior. The idea is to weave
error sources into existing models, like noise-
components intercepting a connection. Using selective
extensions, the tested models do not have to be
specifically prepared for fault injection; system parts
can just be removed from inheritance and replaced by
faulty – or even mock-up versions using external table-
data – to inject misbehavior and configure the
environment of error scenarios.

Acknowledgements
I am grateful for the help of Hans Olsson with the
implementation of selective model extension in
Dymola; his advices regarding the example scenario of
Section 4 and proof reading have been very valuable. I
also like to thank Hilding Elmqvist for his idea to add
FMU extraction as valuable application case.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

288 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

References
Modelica Association. Modelica® - a unified object-oriented

language for systems modeling: language specification
version 3.4, 2017.

Modelica Association. Functional mock-up interface for
model exchange and co-Simulation, 2014.

Hilding Elmqvist, Martin Otter and Sven Erik Mattson.
Fundamentals of synchronous control in Modelica.
Proceedings of the 9th International Modelica Conference,
2012. doi:10.3384/ecp1207615.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier and John
Irwin. Aspect-oriented programming. Lecture Notes in
Computer Science, 1241:220–242, 1997.
doi:10.1007/BFb0053371.

Jørgen Lindskov Knudsen, Mats Löfgren, Ole Lehrmann
Madsen and Boris Magnusson. Object-oriented
environments: the Mjølner approach, Prentice Hall, 1993.

Martin Otter, Bernhard Thiele and Hilding Elmqvist. A
Library for Synchronous control systems in Modelica.
Proceedings of the 9th International Modelica Conference,
2012. doi:10.3384/ecp1207627.

Antero Taivalsaari. Classes vs. prototypes: some
philosophical and historical observations. Journal of
Object-Oriented Programming, 10(7):44–50, 1997.

Peri Tarr, Harold Ossher, William Harrison and Stanley M.
Sutton. N degrees of separation: multi-dimensional
separation of concerns. Proceedings of the 21st
International Conference on Software Engineering, 1999.
doi:10.1145/302405.302457.

Peter Wegner. Dimensions of object-based language design.
Proceedings of the 2nd conference on Object-Oriented
Programming, Systems, Languages, and Applications,
1987. doi: 10.1145/38765.38823.

7 Appendix A
The following list is a rough estimation of examples of
the Modelica Standard Library 3.2.2 that might be of
interest for synchronous adaptation; about 60 existing
continuous models have been identified. As criteria to
consider a model relevant for synchronous adaptation,
the containment of components modelling a controller
has been chosen; further only examples – i.e., models
extending Modelica.Icons.Example – have been
considered. The potential examples of interest are (the
actual example models are highlighted green):

Blocks
 Examples
 PID_Controller
 NoiseExamples
 ActuatorWithNoise
Electrical
 Machines
 Examples
 AsynchronousInductionMachines
 SwitchYD
 AIMC_Inverter
 AIMC_Conveyor
 AIMC_withLosses
 SynchronousInductionMachines
 SMR_Inverter
 SMPM_Inverter
 SMPM_CurrentSource

 SMPM_VoltageSource
 SMPM_Braking
 SMEE_Generator
 SMEE_LoadDump
 SMEE_Rectifier
 PowerConverters
 Examples
 ACDC
 Rectifier1Pulse
 Thyristor1Pulse_R
 Thyristor1Pulse_R_Characteristic
 RectifierBridge2Pulse
 HalfControlledBridge2Pulse
 ThyristorBridge2Pulse_R
 ThyristorBridge2Pulse_RL
 ThyristorBridge2Pulse_RLV
 ThyristorBridge2Pulse_RLV_Characteristic
 ThyristorBridge2Pulse_DC_Drive
 RectifierCenterTap2Pulse
 ThyristorCenterTap2Pulse_R
 ThyristorCenterTap2Pulse_RL
 ThyristorCenterTap2Pulse_RLV
 ThyristorCenterTap2Pulse_RLV_Characteristic
 RectifierCenterTapmPulse
 ThyristorCenterTapmPulse_R
 ThyristorCenterTapmPulse_RL
 ThyristorCenterTapmPulse_RLV
 ThyristorCenterTapmPulse_RLV_Characteristic
 RectifierBridge2mPulse
 HalfControlledBridge2mPulse
 ThyristorBridge2mPulse_R
 ThyristorBridge2mPulse_RL
 ThyristorBridge2mPulse_RLV
 ThyristorBridge2mPulse_RLV_Characteristic
 ThyristorBridge2mPulse_DC_Drive
 RectifierCenterTap2mPulse
 ThyristorCenterTap2mPulse_R
 ThyristorCenterTap2mPulse_RL
 ThyristorCenterTap2mPulse_RLV
 ThyristorCenterTap2mPulse_RLV_Characteristic
 DCAC
 SinglePhaseTwoLevel
 SinglePhaseTwoLevel_R
 SinglePhaseTwoLevel_RL
 MultiPhaseTwoLevel
 MultiPhaseTwoLevel_R
 MultiPhaseTwoLevel_RL
 DCDC
 ChopperStepDown
 ChopperStepDown_R
 ChopperStepDown_RL
 HBridge
 HBridge_R
 HBridge_RL
 HBridge_DC_Drive
Magnetic
 QuasiStatic
 FundamentalWave
 Examples
 BasicMachines
 InductionMachines
 IMC_Inverter
 SynchronousMachines
 SMPM_CurrentSource
 SMR_CurrentSource
Mechanics
 MultiBody
 Examples
 Systems
 RobotR3
 oneAxis
 fullRobot
Fluid
 Examples
 PumpingSystem
 DrumBoiler
 DrumBoiler
 ControlledTankSystem
 ControlledTanks
 AST_BatchPlant
 BatchPlant_StandardWater
 TraceSubstances
 RoomCO2WithControls
Thermal
 HeatTransfer
 Examples
 ControlledTemperature

	Session 3B: Language
	Modelica language extensions for practical non-monotonic modelling: on the need for selective model extension

