
Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 87
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

Standardized Integration of Real-Time and Non-Real-Time Systems: The
Distributed Co-Simulation Protocol
Krammer, Martin and Schuch, Klaus and Kater, Christian and Alekeish, Khaled and Blochwitz, Torsten and
Materne, Stefan and Soppa, Andreas and Benedikt, Martin

87

Standardized Integration of Real-Time and
Non-Real-Time Systems: The Distributed Co-Simulation

Protocol

Martin Krammer1 Klaus Schuch2 Christian Kater3 Khaled Alekeish4 Torsten Blochwitz4

Stefan Materne5 Andreas Soppa6 Martin Benedikt1

1VIRTUAL VEHICLE Research Center, Austria, {martin.krammer,martin.benedikt}@v2c2.at
2AVL List GmbH, Austria, klaus.schuch@avl.com

3Leibniz Universität Hannover, Germany, kater@sim.uni-hannover.de
4ESI-ITI GmbH, Germany, {torsten.blochwitz,khaled.alekeish}@esi-group.com

5TWT GmbH, Germany, stefan.materne@twt-gmbh.de
6Volkswagen AG, Germany, andreas.soppa@volkswagen.de

Abstract
Co-simulation techniques have evolved significantly
over the last 10 years. System simulation and
hardware-in-the-loop testing are used to develop com-
plex products in many industrial sectors. The Func-
tional Mock-Up Interface (FMI) represents a stan-
dardized solution for integration of simulation mod-
els, tools and solvers. In practice the integration and
coupling of heterogeneous systems still require enor-
mous efforts. Until now no standardized interface or
protocol specification is available, which allows the
interaction of real-time and non-real-time systems of
different vendors. This paper presents selected tech-
nical aspects of the novel Distributed Co-simulation
Protocol (DCP) and highlights primary application
possibilities. The DCP consists of a data model,
a finite state machine, and a communication proto-
col including a set of protocol data units. It sup-
ports a master-slave architecture for simulation setup
and control. The DCP was developed in context of
the ACOSAR project and was subsequently adopted
by Modelica Association as a Modelica Association
Project (MAP). It may be used in numerous indus-
trial and scientific applications. The standardization
of the DCP allows for a modular and interoperable de-
velopment between system providers and integrators.
In the end, this will lead to more efficient product
development and testing.
Keywords: DCP, co-simulation, real-time, integra-
tion, standard

1 Introduction
Modeling and simulation represent key methods for
successful development of cyber-physical systems.
With the introduction of co-simulation methodolo-
gies, holistic cross-domain or system simulations be-
came possible. This enabled exchange and integration
of simulation models, tools, and solvers from different

sources. The automotive industry is characterized by
a multi-tiered organization. A deep hierarchy of sup-
pliers performs distributed development and integra-
tion of automotive components, parts, and systems,
that in the end are manufactured to complete vehi-
cles. Depending on the stage of development, simu-
lation models or real prototypes are available. The
advantage of simulation models is that they can be
tested in terms of software. Software tests are compa-
rably cheap. However, they typically do not consider
timing aspects or uncertainties of measured quanti-
ties. On the other hand, prototypes are advantageous
when it comes to product validation. A prototype
shows real-world behaviour and interacts with the en-
vironment. The disadvantages are that prototypes
are usually very expensive, and safety critical or rare
situations are difficult to test. For these reasons it
seems advantageous to combine simulation and real-
world prototype based testing approaches. For cer-
tain use cases this is considered as a possible solution
to cope with the arising complexity, due to the high
number of different scenarios and situations. This es-
pecially includes the field of automated driving (Doms
et al., 2018). The European Union’s automotive in-
vestment in research and development has increased
to 53.8 billion Euro annually (European Automobile
Manufacturers Association, 2018). Testing efficiency
is key to successful product development. Interop-
erability of simulation tools and test infrastructure
contributes to testing efficiency. Therefore the use of
standards is essential.

The DCP (Distributed Co-Simulation Protocol)
was developed in the ACOSAR project (Krammer
et al., 2016). ACOSAR stands for "Advanced Co-
Simulation Open System Architecture". ACOSAR
was an ITEA 31 (Information Technology for Euro-
pean Advancement) project. Three original equip-

1http://www.itea3.org

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

88 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

© VIRTUAL VEHICLEAugust 2014 / Benedikt ACOSAR - Project proposal 1

Co-simulation Environment

Simulation

Environment
FMU

Drivetrain

Simulation

Environment

Li-Ion

Battery
Cooling

FMU

PC or Computing Cluster

(Co-) Simulation Environment

Transport protocol

Distributed co-simulation
protocol

(e.g. engine
testbench)

Communication Systems

Real-time
system

Wired
communication

(e.g. CAN)

Wireless
communication
(e.g. BlueTooth®)

Interprocess
communication

(e.g. shared memory)

Proprietary Interface Functional Mockup Interface (FMI) Distributed Co-Simulation Protocol

Figure 1. DCP concept.

ment manufacturers (OEM), 9 companies from the
automotive supply chain, including simulation tool
vendors, system and component providers, as well
as 4 partners from research and academia cooper-
ated. Their main goals were (1) the specification
and demonstration of the DCP, and (2) preparation
of standardization of the DCP with a recognized stan-
dardization body in order to promote it as the next
co-simulation standard. Figure 1 shows an overview
of the DCP’s concept.

2 Related Work
The Functional Mock-up Interface (FMI) is intro-
duced in (Blochwitz et al., 2011). The FMI was pro-
posed to solve the need for interoperability between
models and solvers. It was developed in the MOD-
ELISAR project, starting in 2008. The FMI specifica-
tion is standardized as a Modelica Association Project
(MAP). Its current version is 2.0 and was released
in 2014. The FMI specification defines an interface
for model exchange and co-simulation. Today more
than 100 software tools support the FMI2. For dis-
tributed simulation environments, network commu-
nication technologies are frequently used in practice.
However, such a "communication layer is not part of
the FMI standard" (Modelisar Consortium and Mod-
elica Association Project "FMI", 2014, p.93).

The Distributed Co-Simulation Protocol (DCP) is
introduced in (Krammer et al., 2018). Its five main
design ideas are highlighted; the improvement of in-
teroperability between systems from different ven-
dors, the integration of distributed real-time systems,
the compatibility to a broad range of computing plat-
forms, the support of multiple transport protocols,
and development efficiency. The paper also intro-
duces a typical architecture description of a DCP
slave. It also describes the DCP’s three different oper-
ating modes, namely hard real-time (HRT), soft real-
time (SRT), and non real-time (NRT). They describe
a DCP slave’s relationship to absolute time. In gen-

2http://fmi-standard.org/tools/

eral, deadlines must be kept for HRT and SRT op-
erating modes. Simulation time must or should be
synchronous to absolute time. The NRT operating
mode can be used for distributed, computational co-
simulation. In NRT operating mode, simulation time
is independent from absolute time. The DCP speci-
fies a state machine that governs the behaviour of a
DCP slave. It defines five phases of a simulation cy-
cle. Furthermore, the paper describes the main con-
cepts of the communication protocol, including the
design of protocol data units (PDU), the request and
response mechanism, as well as the mechanism for
configuration and exchange of input and output data.
An example for UDP as a transport protocol is given,
explaining the mechanism in detail.

In (Krammer and Benedikt, 2018) an algorithm for
efficient generation of configurations for exchange of
input and output data is given. The problem of find-
ing such a configuration is an instance of the bin pack-
ing problem. In order to run such an algorithm, a
co-simulation scenario description is required. The
paper suggests a solution based on an XML schema
description.

3 The Distributed Co-Simulation
Protocol

The DCP is designed as a novel communication pro-
tocol on application level. It is intended for configura-
tion and data exchange in co-simulation applications.
The following sections provide details on features and
technical novelties. Furthermore, the relationship to
the FMI standard is highlighted.

3.1 DCP Feature Overview
3.1.1 Communication Architecture
The DCP implements the master-slave principle. It
enables a DCP master to organize and configure its
DCP slaves, so that a specific co-simulation scenario
can be realized. A DCP slave represents a single sub-
system of the co-simulation scenario. It can be a
hardware-in-the-loop (HiL) system, a test bench, a

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 89
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

simulation tool, or similar system.

The DCP is a communication protocol intended for
co-simulation configuration and data exchange. It is
defined as a communication protocol that is indepen-
dent of the underlying transport protocol. Classifica-
tion of the DCP according to the Open Systems Inter-
connection (OSI) model (Zimmermann, 1980; Inter-
national Telecommunication Union, 1994) is ambigu-
ous. Its main properties fulfill major criteria for the
application layer, e.g. access for application processes
to the OSI environment. This is the highest layer
defined in the OSI model. The DCP also features
properties of the presentation layer, e.g. the design
of DCP protocol data units (PDU), their associated
fields and corresponding data types. The DCP imple-
ments a registration scheme, that allows the setup and
simulation of co-simulation scenarios. This can be in-
terpreted as a session. For the transport layer, the
DCP defines mechanisms like the PDU sequence ID.
Despite the fact that some transport protocols target
properties like reliability (e.g. transmission control
protocol, TCP), the DCP provides basic mechanisms
to achieve similar behavior when a transport protocol
is used that does not support this property (e.g. user
datagram protocol, UDP).
3.1.2 State Machine
The DCP protocol is operated by a discrete state ma-
chine. The main design goal of this state machine
is to ensure safe and reliable operation of real-time
and non-real-time systems. In total, the DCP state
machine consists of a set of 19 states grouped in 6
superstates. The entry point to the state machine
is reached when the DCP software implementation
is loaded to the DCP slave, the latter also indicates
that the slave becomes available for registration by
the master. A simulation cycle represents one com-
plete pass through the DCP state machine.

The state machine enables simulation cycles having
6 different phases. In phase 1, a DCP slave is regis-
tered with a master which takes ownership of its reg-
istered slave. The later DCP slave is then exclusively
controlled by its master. In phase 2, the DCP mas-
ter configures its DCP slaves by generating a valid
configuration scenario based on the DCP slave de-
scription of its slaves. Also for connection oriented
transport protocols, a connection is established dur-
ing the current phase. In phase 3, an iterative ini-
tialization process is carried out, the outcome of this
process is establishing a consistent initial state over
interconnected slaves. (see 3.2.2 for more details). In
phase 4, The DCP slave in real-time operating modes
is running and inputs/outputs are exchanged accord-
ing to the configurations. Moreover, simulation time
is mapped to absolute time. For non-real-time oper-
ating mode, simulation time does not progress at this
phase. See section 3.2.3 for more details. Phase 5 ap-
plies only to non-real-time systems and each slave at

this phase computes exactly one communication step
and output is communicated to other slaves. Also the
virtual simulation time is incremented by the number
of specified steps. Phase 6 is intended to stop the
simulation in a safe way, a stop of simulation can be
triggered either by the master or by the slave itself.
3.1.3 Communication Protocol
To facilitate the communication between the master
and slaves, DCP introduces the concept of Protocol
Data Units (PDUs) that can be exchanged between
the master and slaves. DCP addresses different types
of PDUs which are used for different purposes and
they serve distinct functionalities. So according to the
functionalities of the PDUs, they are categorized in
different families. DCP defines three top PDUs fam-
ilies named as Control, Notification (NTF) and Data
(DAT) PDUs. The Control PDUs are further divided
into Request and Response (RSP) families. Note that
the Request PDUs are only sent by the master to its
slaves and they consist of Configuration (CFG), State
Change (STC) and Information (INF) requests. A
slave upon receiving a request from its master has to
acknowledge by sending a RSP PDU. DCP slaves can
use NTF PDUs to inform the DCP master about cer-
tain events, for example, when the slave changes its
state. Data PDUs can be used to transmit inputs and
outputs between DCP slaves (slave-to-slave commu-
nication) and between the DCP master and its DCP
slaves. Parameters (fixed or tunable), which are also
packed in Data PDUs, can only be transmitted by the
DCP master.

The Control PDUs are exchanged according to the
request-response pattern. The latter pattern allows
the DCP master to send specific requests to its slaves,
it also enables each slave to inform its DCP master
about the result of a requested action. Considering
that DCP might be used on top of an unreliable trans-
port protocol, packets loss might occur during the ex-
change of Control PDUs. Handling the latter situa-
tion can be determined by the DCP master and DCP
slaves. For example, the DCP master might decide to
initiate the retransmission of a Request PDU after a
certain period of time.
3.1.4 DCP Data Exchange
DCP facilitates the exchange of input/output data
between slaves. It enables a slave either to send
data to other slaves directly or to send data to the
master which passes this data on to all destination
slaves. While the former communication way saves
time and resources, the latter is intended for more
sophisticated co-simulation configurations including
extrapolation techniques or step-size control. A co-
simulation DCP slaves configuration consists of a
set of their DCP slave descriptions, the connections
between their inputs and outputs as well as some
other settings chosen by the master. This configu-

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

90 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

ration is rolled out to the slaves during the config-
uration phase. A slave that needs to send output
data, receives a CFG_output PDU from the master,
for each output data. The same applies to input
data, the slave receives a CFG_input PDU for each
input data it is going to receive. In addition to the
two mentioned types of Control PDUs, the master
also sends CFG_target_network_information and
CFG_source_network_information PDUs. The lat-
ter two types of Control PDUs enable slaves to know
where to send or from where to receive data, respec-
tively, and their contents depend on the communica-
tion medium.

In addition to the input and output data, DCP also
enables the master to send data for the parameters
of its slaves and only the master can send this kind
of data. Parameters can be either fixed or tunable,
both types can be set during the configuration phase
using the CFG_parameter PDU. While fixed param-
eters can be set only using the latter PDU, tunable
ones can be set using the DAT_parameter PDU dur-
ing any of the states that allow DAT_input_output
PDUs to be sent. In the same way like the other Data
PDUs, DAT_parameter PDUs are sent according to
the stored configuration information which is received
using the CFG_tunable_parameter PDUs during the
configuration phase.

3.2 Technical Novelties
3.2.1 Integration Process

The DCP specification document describes the de-
sign of a DCP slave only. A DCP master is required
to control a co-simulation scenario, which includes at
least one DCP slave. In order to design and set up
such a scenario, the DCP defines a non-normative de-
fault integration methodology. It defines the roles of
a DCP slave provider, and a DCP integrator. The
DCP integrator uses the DCP slave descriptions and
a DCP master for configuration and control of the
scenario.

The DCP slave description (DCPX) is a XML (Ex-
tensible Markup Language) file which describes one
single DCP slave. It contains all static informa-
tion related to one specific DCP slave. Its struc-
ture is defined by a normative XML XSD (XML
Schema Definition) file. The top level structure of
this schema definition file is shown in Figure 2. The
DCP slave provider must provide an accompanying
DCP slave description together with a DCP slave.
The DCP master can attain all required information
about available slaves by accessing their description
files.

According to the specification, the DCP slave
description must be stored in a single file named
dcpSlaveDescription.dcpx, which in turn must be
placed in a DCP file. The DCP file is a zip encodedC:\work\spaces\Modelica\dcp-design\Specification\dcpx\dcpSlaveDescription.xsd 20.11.2018 08:28:35

Page 1Registered to Martin Krammer (Virtual Vehicle)

dcpSlaveDescription

attributes

OpMode

UnitDefinitions

TypeDefinitions

VendorAnnotations

TimeRes

Heartbeat

TransportProtocols

CapabilityFlags

Variables

1 ..

dcpVariable

Variable

attributes

Input

Output

Parameter

StructuralParameter

Annotations

assertions

Log

assertions

Figure 2. DCP slave description schema definition.

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 91
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

file (ISO/IEC JTC 1/SC 34, 2015) having the exten-
sion .dcp. Its internal structure is normative and
designed to hold multiple DCPX files which are com-
pliant to different DCP version numbers. This is one
example of several design provisions taken into ac-
count to provide a future-proof DCP specification.

The set of DCP slave description schema files is
normative. It does not only define the required struc-
tures of elements and attributes, but also supplemen-
tary assertions and constraints. Assertions and con-
straints are highly efficient for expressing logical rela-
tionships between elements and attributes.

Assertions are expressed in the xs:assert tag us-
ing the XML Path Language (XPath). An XPath
expression addresses parts of an XML document in
terms of a tree structure (Document Object Model,
DOM). One location step in this tree consists of axis,
node-test, and an optional predicate. An example for
such an assertion is shown in Listing 1. It links the
capability flag canMonitorHeartbeat to the defined
XML child element Heartbeat. This prevents e.g. a
set capability flag while the associated configuration
information contained in the child element is missing.
Assertions are a feature of XSD version 1.1. How-
ever, an XSL transformation (XSLT) file is specified,
transforming the provided XSD version 1.1 schema
definition file into a XSD version 1.0 schema defini-
tion file.

Furthermore, xs:unique, xs:key and xs:keyref
tags are used to express constraints. Typical exam-
ples of application include the verification of unique-
ness of names and the verification of cross-referenced
key values.

In context of the DCP specification assertions and
constraints provide strong formalisms which can be
used for automated DCPX validation. This has
shown to be advantageous in comparison to informal
textual rules given in the specification document.

<xs:assert test="
((./ CapabilityFlags / @canMonitorHeartbeat

eq true ()) and boolean (./ Heartbeat))
or

((./ CapabilityFlags / @canMonitorHeartbeat
eq false ()) and boolean (./ Heartbeat)
eq false ())

"/>

Listing 1. Assertion for capability flag and XML child
element, as defined in the DCP slave description schema
file.

3.2.2 Simulation Initialization
The DCP supports initialization calculations to
achieve a consistent initial condition of connected
DCP slaves. The DCP description file contains in-
formation about the DCP slave’s dependencies. A
dependency describes if an output is controllable by

an input or parameter. Dependency information can
be specified for the Initialization and Run superstates
separately. The first is applicable prior to simulation,
whereas the latter is applicable during simulation.
Additionally, a DCP slave can mark outputs to be
valid only in Initialization superstate. Such outputs
are called initial outputs.

In the initialization phase simulation time does not
progress. Hence, the master may roll out a configura-
tion where the master receives all outputs and sends
all inputs to the DCP slaves. The inputs sent by
the master to the DCP slaves are not necessarily the
outputs of other DCP slaves, a sophisticated master
could send values chosen by a numerical solver in-
stead (to solve algebraic loops). Algebraic loops in
the context of FMI are explained in (Broman et al.,
2013).

Connected DCP slaves may form pseudo algebraic
loops. Such pseudo algebraic loops can be detected
by exploiting the dependency information provided
by the individual DCP slaves.
3.2.3 Simulation Synchronization
The master can observe the whole system to check if a
global stable state was reached. The master informs
the slaves afterwards to start the actual simulation
test run. The achieved initial consistent configura-
tion might still not correlate with reality. An output
of a DCP slave could represent a physical quantity
which typically fluctuates within certain boundaries.
To minimize this difference and to circumvent this is-
sue separate states were introduced. Each slave has
the possibility to indicate that a local stable state has
been reached, after fade out of transient oscillations.
The master may observe the whole scenario to check
if a global stable state was reached. If this is the case,
the master may start the actual simulation run.
3.2.4 Connection-oriented Transport Proto-

cols
The DCP supports connection-oriented and packet-
oriented transport protocols.

To support connection-oriented protocols, two ma-
jor mechanism were introduced to the DCP.

First of all, new states were introduced to distin-
guish between opening an endpoint and opening a
connection. This is necessary to enable coordinated
slave-to-slave communication. Without this distinc-
tion it would not be possible to detect if a slave has
successfully opened its endpoints, ready to accept
connections. Using this mechanism the master is able
to instruct all slaves to open all endpoints first. After
that, the slaves may establish their connections.

Second, the length of each PDU is sent on the
stream, ahead of the actual PDU of the connection-
oriented transport protocol. This eases implementa-
tion of slaves, because a slave is free to decide how
many bytes he has to receive, independent from a

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

92 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

Simulation Scenario

<< calculate >>

Slave 1 Slave 2

DCP over CAN
Memory

Scenario Configuration
XML File

KCD
XML File

Slave 1

DCP
Implementation *

CAN HW*

CAN Bus

Legend Slave 2

DCP
Implementation *

CAN HW*

Action before simulation cycle starts

<< user input >>
<< generate >>

<< distribute>>

 STC_register

PDU send after distribution of KCD &
Scenario Configuration

* Not standardized. Architecture of an slave
implementation can differ between vendors.

Master Tool

Figure 3. Possible scenario of DCP over CAN

slaves’ configuration. In addition to that, PDU length
verification also became possible.

Without the length ahead of the PDU a slave can
only guess the length, based on its own assumptions.
Misbehavior by other participants in terms of PDU
length would not be detectable.
3.2.5 Non-native Transport Protocols
The DCP distinguishes between native and non-
native transport protocols. Native DCP means that
the mapping of PDUs to the transport protocol pre-
serves the bit sequence.

If a transport protocol cannot fulfill this condition
it is called a non-native transport protocol. One ex-
ample of such a non-native transport protocol is the
CAN bus communication system. Due to limitations
of CAN, e. g. the CAN payload is limited to 8 bytes,
not all Control PDUs can be send via CAN. For this
reason the configuration of a slave will not be com-
municated by CAN.

To support the exchange of configuration PDUs
for CAN an XML model is specified. The informa-
tion contained in this model has to be generated by
a master tool. It must be transmitted to the slave as
a static configuration before simulation start. This
model contains a K-matrix and the scenario config-
uration. The K-matrix contains all elements to de-
scribe the messages and signals of the CAN bus and
the participation of the bus members to the messages.
The scenario configuration contains all elements to
describe the co-simulation scenario. When using a
native DCP transport protocol instead, this informa-
tion would be distributed to each DCP slave using
configuration PDUs. In addition, the co-simulation
scenario contains various other information, like DCP
slave names, DCP slave identifiers, and their UUIDs
(universally unique identifiers). The UUID is used
to match information from these elements to DCP
slaves. However, the way how information from the
XML model is transferred to the DCP slaves is out of

scope of DCP.
Figure 3 shows a possible scenario how DCP over

CAN may be used in practice. A user defines the
desired co-simulation scenario in master tool, sup-
porting DCP over CAN. Based on this scenario the
master calculates the K-Matrix and the scenario con-
figuration in the DCP over CAN model and stores
these information in different files. For the K-matrix
e.g. the open source file format KCD was chosen.
Any other file format describing CAN communica-
tions, e.g. DBC from Vector, would also be possible.
After slaves are started, the CAN hardware is config-
ured using the KCD file. The DCP implementation
is configured using the scenario information. As a re-
sult, all slaves are waiting in state alive. The master
tool sends out the register PDUs using the CAN bus
and starts the simulation cycle.

3.2.6 Complex data types
New sensor technologies are currently evolving, for
example camera, lidar or radar systems for the au-
tomotive market. In the automotive domain, these
sensor types are used to enable advanced driver as-
sistance systems (ADAS), to pursue the goal of auto-
mated driving. Test and operation of these systems
rely on transmission of multidimensional or binary
data types.

The DCP defines a binary data type to transmit ar-
bitrary information. The binary representation con-
sists of a 32 bit unsigned integer value that specifies
the length in bytes of the actual data, followed by the
binary data itself. The data is transmitted as given
without any change in bit or byte order. Thus, the
maximum length of data is limited to 232−1 bytes. A
DCP slave can limit this maximum length per vari-
able, by specification of a maximum length in the
DCP slave description. It is also possible to spec-
ify a MIME type compliant to RFC 2045 (Freed and
Borenstein, 1996). The DCP integrator has to ensure
compatibility between outputs and connected inputs

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 93
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

of binary data type, in the sense of maximum length
and MIME type.

The DCP offers the possibility to define variables as
arrays. An array variable is a data structure consist-
ing of a collection of variables of the same type, each
identified by an array index. A variable may have a
constant number of dimensions. Each dimension has
a size, defined by a constant or a structural parame-
ter. By using a structural parameter it is possible to
change the size of a dimension at any time.

3.2.7 Logging

The DCP supports the transmission of arbitrary log
data from a DCP slave to its master. For that, it de-
fines two different approaches, namely log-on-request
and log-on-notification.

For log-on-request, log messages are stored by the
DCP slave. They are picked up by the master on re-
quest and at any time. Thereby the master can avoid
a high workload caused by log messages in the real-
time-critical superstate Run. For log-on-notification,
log messages are not stored within the DCP slave.
Instead, they are transmitted to the master immedi-
ately. This mechanism supports devices with limited
memory capacities, like micro-controllers.

The exact format of a log message is defined in the
DCP slave description by using log templates. A log
template consists of a category, level and a message.
The category is defined in the DCP slave description.
The possible values for the level are defined by the
DCP. The category and the level can be used by the
master to configure the logging of the DCP slave in
a group wise manner. It is not necessary to configure
every single log template individually.

The message of a log template defines the actual log
string which is displayed to the user. In this string
placeholders can be set, which define the values sent
by a DCP slave to the master with the log message
as seen in Figure 4. The full log message is then gen-
erated by the master, by replacing the placeholders
with the received values from the slave.

3.3 Interaction with FMI
Right from the beginning of the ACOSAR project
existing solutions for distributed co-simulation and
system integration were carefully surveyed (Lichten-
stein et al., 2016). Today, the FMI represents one
of the most frequently used standards in the field of
simulation. It is applied in many domains, including
automotive, aerospace, maritime, or power grid do-
mains. It is implemented in more than 100 commer-
cial and open source tools. The ACOSAR consortium
members recognized the feature set of FMI which rep-
resents the current state-of-the-art for co-simulation.
As a consequence, the consortium proposed the adop-
tion and extension of available concepts. The most
important ones are described below.

The FMI follows a master-slave principle. In FMI
for co-simulation different simulators can be coupled,
if they are able to communicate data during simu-
lation at certain time points. The master algorithm
must handle data exchange between functional mock-
up units (FMU) (Bastian et al., 2011). For exam-
ple, it connects the output of an FMU to the in-
put of another FMU. A co-simulation scenario rep-
resents a collection of interconnected FMUs. This
introduces numerous challenges to the design of a
master. The sequence of FMU calculations, or in-
terpolation and extrapolation algorithms for FMUs
operating with different step sizes represent some ex-
amples. A DCP master also connects the outputs
of DCP slaves with the inputs of DCP slaves. In
order to do so, a DCP master must be able to gen-
erate and roll out a configuration based on the in-
tended simulation scenario (Krammer and Benedikt,
2018). In contrast to the FMI, the DCP also enables
direct slave-to-slave communication. As an immedi-
ate consequence, dedicated coupling algorithms, like
NEPCE (Benedikt et al., 2013) may only be applied
if communication between DCP slaves is routed via
the master.

The master-slave principle also follows economic
goals. Slave providers agree on a standard, but com-

Slave

Log Template
Id = 1

Category = Safety
Level = Error

Msg = "Component %uint8 is overheating. Temp. at %float32 °C"

<< send >>

NTF_Log
time = 03.10.2019 10:32

log_template_id = 1
log_arg_val = 7, 120.3

Master

Display

Time Level Category Message
03.10.2019 10:32 Error Safety Component 7 is overheating. Temp. at 120.3 °C.
...

Legend

Action before
simulation cycle starts

Action during
simulation cycle

<< read from dcp slave description >>

Figure 4. Example of log-on-notification mechanism.

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

94 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

pete in slave implementation. This allows an inte-
grator to choose from best-in-class solutions. From a
slave provider’s perspective the market entrance bar-
rier is lowered, since he is able to offer accessible so-
lutions. Furthermore, the master algorithm, which is
not standardized neither for FMI nor for DCP, may
enable a stronger position on the market.

The FMI is operated using a state machine. Since
state machines are one major method for the design
and operation of communication protocols, the DCP
was also defined on the basis of a state machine. The
specification defines which PDUs can be sent and re-
ceived in each state, the possible transitions between
states, and the possible behaviour in each state. The
DCP defines an Initialization superstate, which
corresponds to the Initialization Mode of FMI.

The integration process of FMUs is supported by
a standardized XML schema definition. It is used to
generate one modelDescription.xml file per FMU. It
contains the necessary information for instantiation
and use of an FMU. It must be placed in the root
directory inside an FMU, to allow an FMI master
to read this information. Furthermore, a FMU may
contain source code and/or compiled libraries. Due
to the nature of DCP slaves, the inclusion of source
code and/or compiled files within a DCP slave file is
currently not explicitly specified.

4 Use Case

4.1 Overview

Typical use cases for the DCP include vehicle test
benches, where real and virtual components are inte-
grated into the same simulation scenario. This allows
the execution of test cases that would not be possible
in reality, due to cost, availability of components, or
safety reasons. In this section we present a use case
that is based on an engine testbed (PUMA from AVL
List GmbH3) that interacts with a simulated vehicle
and a simulated driver. A schematic overview of this
use case is shown in Figure 5. The vehicle and the
driver are simulated within one DCP slave ("Vehi-
cle"), and the testbed available as another DCP slave
("Engine"). This use case is simulated as an SRT sce-
nario. The connections of output variable to input
variables between DCP slaves are shown as solid ar-
rows in Figure 6.

4.2 Dependency Structures

The outputs of the DCP slave "Vehicle" are ytorque and
yalpha; the output of the DCP slave "Engine" is yspeed.
The two DCP slaves are connected in the following

3http://www.avl.com

Engine Testbed PUMA

Engine

ECU

Vehicle and driver simulation

Speed

Torque

Alpha

DCP Slave “Vehicle“ DCP Slave “Engine“

Vehicle

Driver

Figure 5. Vehicle-engine co-simulation use case.

way:

Vehicle.ytorque→ Engine.utorque

Vehicle.yalpha→ Engine.ualpha

Engine.yspeed→Vehicle.uspeed

To be able to start from a non-trivial start condition,
both slaves declare parameters (Vehicle: pstart

velocity,
pstart

gear , pstart
alpha; Engine: pstart

speed) that can be set in the
Initialization superstate (see Section 3.2.2). In
the Initialization superstate, the DCP slave "Ve-
hicle" calculates the initial output as follows:

yinit
speed := fspeed(pstart

velocity,pstart
gear ,pVehicle)

and the DCP slave "Engine" provides the initial out-
put as follows:

yinit
alpha := falpha(utorque,p

start
speed,pEngine)

pVehicle and pEngine are the vectors that contain all
not explicitly mentioned parameters of the Vehicle
and the Engine, respectively.

These initial outputs are used to set parameters
(Engine.pstart

speed, Vehicle.pstart
alpha) of the opposite DCP

slave:

Vehicle.yinit
speed→ Engine.pstart

speed

Engine.yinit
alpha→Vehicle.pstart

alpha

If the master uses an output value of one DCP-slave to
set a parameter of another DCP-slave, we call this a
parameters connection. Such parameter connections
are shown in Figure 6 as dotted arrows.

The dependency of outputs on other variables may
be different in the Initialization superstate and
in the Run superstate. In the Initialization su-
perstate, the outputs of the DCP slave "Vehicle" are
calculated according to:

ytorque := ftorque(pstart
velocity,pstart

gear ,pEngine)
yalpha := pstart

alpha

The output yspeed of the DCP slave "Engine" in
the Initialization superstate is determined by the
parameter pstart

speed, i.e.:

yspeed := pstart
speed

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 95
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

Engine testbed PUMAVehicle and driver simulation

yspeed

ytorque

yalpha

yalpha;init

palpha;start

yspeed;init pspeed;start

DCP Slave “Vehicle“ DCP Slave “Engine“

ualpha

utorque

uspeed

pgear;start

pvelocity;start

Figure 6. Vehicle-engine co-simulation scenario including dependency structure information during initialization.

4.3 Analysis
DCP slaves can provide information about the depen-
dency structure of their outputs in the DCP slave de-
scription file (see Section 3.2.1). A DCP master may
use this information to check if algebraic loops must
be solved to achieve a consistent initial configuration.
A graph may be used for such a check, where the
nodes are variables of the DCP slaves. Each connec-
tion, parameter connection or dependency represents
an edge of the graph. If the graph is acyclic, no al-
gebraic loop needs to be solved. Note that without a
given dependency structure, the DCP master would
have to assume that each output depends on all in-
puts and parameters. The dependencies of outputs
on inputs and parameters in the Initialization su-
perstate of the described DCP slaves are shown in
Figure 6. A dashed arrow from a variable x (an input
or a parameter) to an output y indicates a depen-
dency of y on x. It can be seen immediately that the
graph does not contain any loops. Hence, a simple
sequence of setting inputs/parameters after receiving
output values is sufficient to achieve a consistent ini-
tial configuration. The DCP slaves state machines
can subsequently be transitioned to superstate Run in
order to perform synchronization (see Section 3.2.3)
followed by the actual test case.

5 Standardized Solution
The Modelica Association4 is a non-profit, non-
governmental organization with members from Eu-
rope, North America, and Asia. Since 1996, its sim-
ulation experts have been working to develop the
open standard Modelica and the open source Mod-
elica Standard Library. Today it aims at coordinated
standardization, development of software technology,
and corresponding methods in the fields of cyber-
physical systems and systems engineering. Currently
the Modelica Association operates five Modelica As-
sociation Projects (MAP), where the DCP represents

4http://www.modelica.org

the most recent addition to the portfolio. The Mod-
elica Association requires that all MAP results must
be made available under an open source license.

The DCP was accepted as a MAP in 2018. The
DCP specification document is initially published un-
der a Creative Commons Attribution Share-Alike 4.0
license5. The DCP slave description schema files, the
DCP C++ reference implementation, and other sup-
porting materials are initially published under a BSD
3-clause license6.

MAP DCP follows its own rules. They are nego-
tiated between its members and must be acknowl-
edged by the Modelica Association. Contributions to
MAP DCP are welcome. Visitors may contribute to
MAP DCP in an informal way. Advisory Commit-
tee members actively support the design of the DCP.
Its members must attend project meetings and sign
a contributor’s license agreement. They have access
to development infrastructure, including mailing lists
and file repositories. Steering Committee members
have voting rights and define the strategy, feature
roadmap, and future releases of the DCP. Further-
more, they must provide an implementation of the
DCP specification, or part of it, in a commercial or
open source tool. They should actively use DCP in in-
dustrial projects. Further information on these topics
can be found on the DCP website7.

6 Conclusion
The DCP enables integration of real-time systems and
simulation environments in a standardized way. A
stronger relationship between virtual and real worlds
demands for new methodologies in simulation and
test. Applications like automated driving, where high
numbers of real world scenarios can be simulated be-
fore tests are conducted, can significantly benefit from
the DCP.

5https://creativecommons.org/licenses/by-sa/4.0/
6https://opensource.org/licenses/BSD-3-Clause/
7http://www.dcp-standard.org

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

96 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

The DCP specification version 1.0 is released by the

Modelica Association. It represents the new state-of-
the-art for co-simulation and test. The DCP is devel-
oped further by a consortium of original equipment
manufacturers (OEM), simulation tool providers and
software vendors, as well as suppliers for components
and test equipment.

Despite the fact that the DCP was developed with
other standards in mind, like the FMI, there are still
challenges ahead. The FMI compatibility can still
be improved, and the development of other software
technologies like the SSP (System Structure and Pa-
rameterization) will require additional alignment ac-
tivities in the future.

References
Jens Bastian, Christoph Clauß, Susann Wolf, and Peter

Schneider. Master for Co-Simulation Using FMI. In Pro-
ceedings of the 8th International Modelica Conference,
pages 115–120, 2011. doi:10.3384/ecp11063115.

Martin Benedikt, Daniel Watzenig, Josef Zehetner, and An-
ton Hofer. NEPCE - A nearly energy-preserving coupling
element for weak-coupled problems and co-simulations.
International Conference on Computational Methods for
Coupled Problems in Science and Engineering, pages 1–
12, 2013.

Torsten Blochwitz, Martin Otter, Martin Arnold, Con-
stanze Bausch, Christoph Clauß, Hilding Elmqvist,
Andreas Junghanns, Jakob Mauss, Manuel Monteiro,
Thomas Neidhold, Dietmar Neumerkel, Hans Olsson,
Jörg-Volker Peetz, and Susann Wolf. The functional
mockup interface for tool independent exchange of simu-
lation models. In In Proceedings of the 8th International
Modelica Conference, pages 105–114, 03 2011. ISBN 978-
91-7393-096-3. doi:10.3384/ecp11063105.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward a. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of FMUs
for co-simulation. In 2013 Proceedings of the In-
ternational Conference on Embedded Software, EM-
SOFT 2013, pages 1–12. Ieee, sep 2013. ISBN
9781479914432. doi:10.1109/EMSOFT.2013.6658580.
URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6658580.

Thomas Doms, Benedikt Rauch, Bernhard Schrammel,
Christoph Schwald, Edvin Spahovic, and Christian
Schwarzl. Highly Automated Driving - The new chal-
lenges for Functional Safety and Cyber Security. White
paper, TÜV Austria Holding AG and VIRTUAL VEHI-
CLE, Vienna, Austria, 2018.

European Automobile Manufacturers Association. The Au-
tomobile Industry Pocket Guide 2018/2019. Technical
report, European Automobile Manufacturers Associa-
tion, Brussels, Belgium, 2018. URL http://www.acea.
be.

Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose
Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies. RFC 2045, November 1996.
URL https://rfc-editor.org/rfc/rfc2045.txt.

International Telecommunication Union. Information tech-
nology – Open Systems Interconnection – Basic Refer-
ence Model: The basic model. ITU-T Recommendation
X.200, International Telecommunication Union, 1994.

ISO/IEC JTC 1/SC 34. Information technology - Doc-
ument Container File - Part 1: Core. Standard, In-
ternational Organization for Standardization, Geneva,
Switzerland, October 2015.

Martin Krammer and Martin Benedikt. Configuration of
slaves based on the distributed co-simulation protocol.
In 2018 IEEE 23rd International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), vol-
ume 1, pages 195–202. IEEE, 2018.

Martin Krammer, Nadja Marko, and Martin Benedikt.
Interfacing Real-Time Systems for Advanced Co-
Simulation - The ACOSAR Approach. In Cather-
ine Dubois, Francesco Parisi-Presicce, Dimitris Kolovos,
and Nicholas Matragkas, editors, STAF 2016 Doctoral
Symposium and Projects Showcase, pages 32–39, Vi-
enna, Austria, 2016. Dubois, Catherine Parisi-Presicce,
Francesco Kolovos, Dimitris Matragkas, Nicholas.

Martin Krammer, Martin Benedikt, Torsten Blochwitz,
Khaled Alekeish, Nicolas Amringer, Christian Kater,
Stefan Materne, Roberto Ruvalcaba, Klaus Schuch,
Josef Zehetner, Micha Damm-Norwig, Viktor Schreiber,
Natarajan Nagarajan, Isidro Corral, Tommy Sparber,
Serge Klein, and Jakob Andert. The distributed co-
simulation protocol for the integration of real-time sys-
tems and simulation environments. In Proceedings of
the 50th Computer Simulation Conference, SummerSim
’18, pages 1:1–1:14, San Diego, CA, USA, 2018. Soci-
ety for Computer Simulation International. URL http:
//dl.acm.org/citation.cfm?id=3275382.3275383.

Leonid Lichtenstein, Florian Ries, Michael Völker, Jos
Höll, Christian König, Josef Zehetner, Oliver Kotte,
Isidro Corral, Lars Mikelsons, Nicolas Amringer, Stef-
fen Beringer, Janek Jochheim, Stefan Walter, Corinna
Mitrohin, Natarajan Nagarajan, Torsten Blochwitz,
Desheng Fu, Timo Haid, Jean-Marie Quelin, Rene
Savelsberg, Serge Klein, Pacome Magnin, Bruno La-
cabanne, Viktor Schreiber, Martin Krammer, Nadja
Marko, Martin Benedikt, Stefan Thonhofer, Georg Stet-
tinger, Markus Tranninger, and Thies Filler. Literature
Review in the Fields of Standards, Projects, Industry,
and Science. Technical report, ACOSAR Consortium,
2016.

Modelisar Consortium and Modelica Association Project
"FMI". Functional Mock-up Interface for Model Ex-
change and Co-Simulation, Version 2.0, 2014.

Hubert Zimmermann. OSI reference model–The ISO model
of architecture for open systems interconnection. IEEE
Transactions on communications, 28(4):425–432, 1980.

	Session 1C: FMI 1
	Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

	Session 1D: Automotive 1

