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Abstract
The main goal of the Functional Mock-up Interface (FMI)
standard is to allow simulation models to be shared across
tools. To accomplish this, FMI relies on a combination
of XML-files and compiled C-code packaged in a zip
archive. This archive is called an Functional Mock-up
Unit (FMU) and uses the extension .fmu. In theory, an
FMU can support multiple platforms, however this is not
always the case and depends on the type of binaries the
exporting tool was able to provide. Furthermore, a library
providing FMI support may not be available in a particular
language, and/or it may not support the whole standard.
Another issue is related to the protection of Intellectual
Property (IP). While an FMU is free to only provide the
C-code in binary form, other resources shipped with the
FMU may be unprotected.

In order to overcome these challenges, this paper
presents FMU-proxy, an open-source framework for ac-
cessing FMUs across languages and platforms. This is
done by wrapping one or more FMUs behind a server pro-
gram supporting multiple language independent Remote
Procedure Call (RPC) technologies over several network
protocols. Currently, Apache Thrift (TCP/IP, HTTP),
gRPC (HTTP/2) and JSON-RPC (HTTP, WebSockets,
TPC/IP, ZeroMQ) are supported. Together, they allow
FMUs to be invoked from virtually any language on any
platform. As users don’t have direct access to the FMU or
the resources within it, IP is more effectively protected.
Keywords: RPC, FMI, Co-simulation, Model Exchange

1 Introduction
No one simulation tool is suitable for all purposes, and
complex heterogeneous models may require components
from several different domains, perhaps developed in sep-
arate domain specific tools. How such components could
be integrated in a standardized way is a problem the Func-
tion Mock-up Interface (FMI) (Blochwitz et al., 2012)
aims to solve. More specifically, FMI is a tool indepen-
dent standard to support both Model Exchange (ME) and
Co-Simulation (CS) of dynamic models. Currently at ver-
sion 2.0, the standard was one of the results of the MOD-
ELISAR project and is today managed by the Modelica
Association.

A model implementing the FMI standard is known as
an Functional Mock-up Unit (FMU), and is distributed as
a zip-file with the extension .fmu. This archive contains:

• An XML-file that contains meta-data about the
model, named modelDescription.xml.

• C-code implementing a set of functions defined by
the FMI standard.

• Other optional resources required by the model im-
plementation.

The FMI standard consists of two main parts:

• FMI for Model Exchange (ME): Models are exported
without solvers and are described by differential, al-
gebraic and discrete equations with time-, state- and
step-events.

• FMI for Co-Simulation (CS): Models are exported
with a solver, and data is exchanged between subsys-
tems at discrete communication points. In the time
between two communication points, the subsystems
are solved independently from each other.

It’s worth noting that a single FMU may support both
ME and CS, and that the former may be wrapped by an
importing tool into the latter.

FMI has seen high adaption rates since it’s inception in
2011. The official tools page at fmi-standard.org/
tools currently shows about 120 tools supporting FMI
in one way or another. Clearly, the standard is solving
a real problem. However, there are still some practical
challenges related to it.

• FMI is cross platform in theory, but in practice
this depends on the exporting tools ability to cross-
compile native binaries. This is often not the case,
making some FMUs unavailable for a certain plat-
form.

• While FMI has been implemented in several lan-
guages, such as C (JModelica, 2017; QTronic,
2014), C++ (Widl et al., 2013; Hatledal, 2018),
Python (Dassault Systems, 2017; Andersson et al.,
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2016) and Java (Hatledal et al., 2018; Cortes Mon-
tenegro, 2014; Broman et al., 2013), out-of-the-box
support for FMI is still missing in many languages.

• An FMU may require a license or pre-installed soft-
ware on the target computer, making the FMU un-
available on many systems.

• Some FMI implementations only supports CS, mak-
ing parts of the standard unavailable. Others may
support ME also, but may not provide an easy way of
solving them. Thus, some users may find the thresh-
old for utilizing this feature too high.

• IP protection is not covered by the standard, however,
model exporters are free to implement such mecha-
nism as they see fit. Regardless, some model owners
may worry about leaking IP and might be reluctant
in sharing FMUs with others.

In order to resolve these issues, we present FMU-proxy,
a framework for accessing FMUs compatible with FMI
2.0 for CS and ME in a language and platform indepen-
dent way. The language and platform independent nature
of the framework is achieved using well established RPC
technologies, allowing clients and servers for FMU-proxy
to be written in almost any language, on any platform. As
noted by (Durling et al., 2017), server solutions such as
presented in this paper are effective at protecting IP and
unintended distribution. Furthermore, they allow FMUs
with special requirements, such as pre-installed software
and licence requirements, to be utilized on other systems.

Server implementations already exist for C++ and for
the Java Virtual Machine (JVM), while client imple-
mentations exist for C++, Python, JavaScript and the
JVM. Thanks to the stub generation capability of selected
RPC frameworks, additional implementations in other lan-
guages are easy to realize as most of the code will be gen-
erated by the RPC compiler.

FMU-proxy is different from other similar frameworks
offering distributed execution of FMUs in that it com-
pletely separates itself from the master algorithm. It is a
completely standalone project which provides the infras-
tructure required to invoke FMUs over the wire. And just
that.

Rather than having a number of tools creating their
own, perhaps non-modular or internal, distribution mech-
anism, we hope FMU-proxy can be considered as an alter-
native or drop-in replacement for existing solutions. Pos-
sibly, creating a eco-system of remotely available FMUs
in the process.

The source code of FMU-proxy is available online1 un-
der a permissive MIT license.

The rest of the paper is organized as follows. First some
related work is given, followed by a presentation of the
high-level architecture of the framework and subsequent

1https://github.com/NTNU-IHB/FMU-proxy

implementation notes. Finally, a conclusion and future
works are given.

2 Related work
Since the inception of the FMI standard, a multitude of
libraries and software tools supporting the standard has
been implemented. As of November 2018, the official
FMI web page lists 120 such tools. Most of which sup-
ports invocation of FMI 2.0 compatible simulation mod-
els. A list of open-source tools with FMI import capabil-
ities are given in Table. 1. Of these tools, four support
distributed invocation of FMUs. These are:

DACCOSIM (Distributed Architecture for Controlled
CO-SIMulation) (Galtier et al., 2015; Dad et al., 2016),
a FMI compatible master algorithm, that lets the user
design and execute a simulation requiring the collabora-
tion of multiple FMUs on multi-core computation nodes
or clusters. DACCOSIM is implemented in Java and is
built on-top of the Eclipse Rich Client Platform, which
provides the user with a GUI for setting up and running
co-simulations. For complex scenarios with many FMUs
and/or connections, a DSL can be used to replace the GUI.
JavaFMI (Cortes Montenegro, 2014) is used for simulat-
ing and building FMUs. For communications, the Ze-
roMQ middleware is used. DACCOSIM is released under
the AGPL license and is available for both Windows and
Linux.

Coral (Sadjina et al., 2017) is a free and open-source
software for distributed FMI based co-simulation, licensed
under the MPL 2.0. Coral support FMI 1.0 and 2.0
for CS and was developed as part of the R&D project
Virtual Prototyping of Maritime Systems and Operations
(ViProMa) (Hassani et al., 2016). According to the au-
thors, Coral is primarily a C++ library, but also acts as
a tool as it requires setting up and running several pro-
grams in a distributed fashion. Additionally, it comes with
a Command Line Interface (CLI) for running simulations.
Coral works by installing a server program called a slave
provider on each of the machines that should participate
in a simulation. This program is responsible for publish-
ing information on which FMUs are available on that ma-
chine, and exposes a subset of the FMI standard, com-
patible with both FMI 1.0 and 2.0, over the network. It
also handles loading and running FMUs at the request of
the master software, which acts as a client. Coral relies on
the FMI Library (JModelica, 2017) to interact with FMUs,
while networking is facilitated by the ZeroMQ middle-
ware. Google Protocol Buffers are used for encoding/de-
coding messages sent over the network. A special feature
of Coral is that slaves run in parallel, with variable val-
ues passed between them in a distributed fashion. Loggers
and visualizers must therefore be implemented as FMUs
themselves.

FMI Go! (Lacoursière and Härdin, 2017) is an open-
source (MIT) distributed software infrastructure to per-
form distributed simulations with FMI compatible com-
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Table 1. Open Source Software tools for simulating FMUs

FMI support
CS ME

Name v1.0 v2.0 v1.0 v2.0 Standalone Plugin Distributed API CLI GUI Version License
Coral x x x x x x 0.9.0 MPLv2
DACCOSIM x x x x 2.1.0 AGPL
FMI Go! x x x x x x x - MIT
FIDE x x x - -
FUMOLA x x x x x x x alpha -
Hopsan x x x 2.10.0 GPLv3
INTO-CPS x x x - MIT
MasterSim x x x x x x 0.5.0 LGPLv3
Ptolemy II x x x x x x x 10.0.1 MIT
Xcos FMU wrapper x x x x x 0.6 CeCILL
λ -Sim x x x - -
OpenModelica x x x x x 1.12.0 GPLv3

ponents, that runs on Windows, Linux and Mac OS X.
Both CS and ME FMUs are supported, where ME FMUs
are wrapped into CS FMUs. ME FMUs are preferred, as
then the FMI Go! run-time environment can provide roll-
back and directional derivatives of the FMU. In CS FMUs,
these features are considered optional and are often lack-
ing, but may be required to achieve accurate and or stable
simulations. FMI Go! used a client-server architecture,
where a server hosts an individual FMU. Google Protocol
Buffers are used for mapping the various FMI functions to
messages that are transmitted using the ZeroMQ middle-
ware. The Message Passing Interface (MPI) is also sup-
ported. The global stepper is then a client, consuming re-
sults produced by the FMUs. For applications that would
want access to the simulation data, such as loggers, visual-
ization etc., the global stepper serves also as a server. The
System Specification and Parameterization (SSP) (Köhler
et al., 2016) is used for defining the structure of a simula-
tion. Additionally, a bare-bone CLI for this purpose also
exists.

λ -Sim (Bonvini, 2016) is a tool implemented on top
of Amazon Web Services (AWS) that converts FMI based
simulation models into REST APIs. Provided with an
FMU bundled with a JSON configuration file, λ -Sim
builds a series of AWS services that will run simulations
upon requests from a RESTful API. A web-based GUI is
available, allowing users to load the generated API, simu-
late the model and visualize the results.

In (Hatledal et al., 2015) a software architecture for
simulation and visualization based on FMI and web tech-
nologies was presented, using the Java only Remote
Method Invocation (RMI) system for distributed access of
FMUs.

Efforts has also been made to integrate the High Level
Architecture (HLA) (Dahmann et al., 1997) and FMI in
the works of (Awais et al., 2013) and (Garro and Falcone,
2015).

Additionally, the emerging standard Distributed Co-
Simulation Protocol (DCP) (Krammer et al., 2018) should
be mentioned. It is subject to proposal as a standard for

real-time and non-real-time system integration and sim-
ulation, and standardization as a Modelica Association
Project (MAP). The DCP is compatible with FMI and just
like FMI, it defines only the slave. The design of a master
is not in scope of the specification.

FMU-proxy is similar to the DSP in that it aims to en-
able distributed Co-Simulation. However, it does not de-
fine a standard, but mimics FMI for function definitions
and leverages existing RPC frameworks and protocols for
serialization and networking. It also makes no special con-
siderations for real-time system integration like DSP does.

FMU-proxy differs from the other tools mentioned
above as it does not actually simulate any FMUs. It merely
provides access to the FMUs in a flexible way, support-
ing multiple RPCs and network protocols. Time stepping,
variable routing, plotting etc. and other typical task per-
formed by a master tool is left implemented by the inte-
grating tool. This is a feature, allowing FMU-proxy to be
lightweight, easy to use and re-usable in different software
tools.

3 Software Architecture
This section introduces the high level concepts of FMU-
proxy. The software architecture is shown in Fig. 1 and
consists of three main parts:

Figure 1. Software architecture.
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1. Discovery Services A discovery service is a web ap-

plication whose main responsibility is to communi-
cate to users information about and the location of
available FMUs. This information can be obtained
visually through a web interface, or programmati-
cally through an HTTP request.

The discovery service has the following three HTTP
services:

• /availablefmus: Called by user applications.
Returns a JSON formatted string containing in-
formation about all available FMUs registered
with the discovery service. The information in-
clude data from the modelDescription.xml as
well as the IP address of the host machine and
the RPC port(s).

• /register: Called by proxy-servers on start-up.
Registers the server with the discovery server.
Transmits network information, and informa-
tion about the modelDescription.xml for each
locally available FMU.

• /ping: Called by the proxy-servers at regular
intervals, otherwise they will be considered to
be offline by the discovery service.

The discovery service is an optional feature and is not
required when the remote end-point of an RPC ser-
vice can be easily obtained. For instance when run-
ning the server on a physically accessible machine,
allowing the IP address and RPC port(s) to be man-
ually obtained. Another use case could be running
both the client and server on localhost to enable in-
vocations on FMUs from an otherwise unsupported
language.

Multiple discovery services may be online at any
given time.

2. Proxy-server

A proxy-server is responsible for making available
one or more FMUs over a set of RPCs. At the very
least, an implementation should support both Thrift
and gRPC. Additional RPCs, such as JSON-RPC are
optional.

In addition to the RPC support, an implementation
must be able to communicate with the discovery ser-
vice over HTTP. Upon starting the server, the remote
address of a discovery service should be specified.
In order to ensure that the list of available FMUs are
kept up to date, a heartbeat connection to the dis-
covery service is established. At regular intervals,
the server sends a ping - or heartbeat - over HTTP
signalling that it is still online. When enough time
has passed without such a notification, the server is
considered offline and it’s listing is subsequently re-
moved from the discovery service.

FMU-proxy supports both ME and CS FMUs run-
ning on the back-end, but the user is only provided
with a CS API, as ME models are wrapped. Which
solver and parameters to use are configurable by the
user, however the availability of certain solvers are
dependent on the server implementation.

3. Proxy-clients
Proxy clients are used to connect with the FMUs
hosted by the remote server(s). FMU-proxy aims
to provide flexibility, such that clients can be imple-
mented in a wide variety of languages and platform.

Using Thrift or gRPC, the process of generating
the required source-code for interacting with an re-
mote FMU is quite straightforward. Listing. 1 shows
the command required for generating the required
sources when targeting Thrift in JavaScript. Simi-
larly, Listing. 2 shows how C++ sources for gRPC
are generated.

Listing 1. Generating JavaScript sources for interfacing
with remote FMUs using Thrift.

thrift -js service.thift

Listing 2. Generating C++ sources for interfacing with
remote FMUs using gRPC.

protoc -I=. --plugin=protoc-gen-grpc=
grpc_cpp_plugin --cpp_out=. --
grpc_out=. service.proto

The framework accomplishes several things, such as:

• Additional language support. FMUs can be ac-
cessed in previously unsupported languages with low
effort, as no XML has to be parsed and no C-code has
to be interfaced. Depending on the RPC used, stubs
are auto-generated.

• Cross platform access to any FMU. FMUs can be
invoked from unsupported platforms, i.e an FMU
compiled only for Windows can be invoked from a
Linux system. Naturally, a server running on a plat-
form supported by the FMU is required.

• FMI compliance without FMU packaging. It al-
lows models to be compliant with the FMI standard
without actually being packaged as an FMU. From a
client’s perspective, there is no difference between
a "physically backed" FMU and one implemented
in-memory. All the client sees is the RPC interface
mimicking FMI.

• Relaxed run-time constraints. FMUs that require
special software and/or licenses can be invoked from
otherwise incompatible systems.

• Re-usability. As the framework is decoupled from
the master algorithm, it can be used by any software
tool with a centralized master architecture that wants
to support distributed execution of FMUs.
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4 Implementation
This section describes some of the implementation details
related to FMU-proxy. Currently, it comes with server im-
plementations for C++ and the JVM. Client implementa-
tions exist also for C++ and the JVM. Additionally, proof
of concept implementations for Python and JavaScript are
bundled. In addition to the servers and clients, FMU-
proxy comes bundled with an implementation of a discov-
ery service.

4.1 The Discovery Service
The discovery service has been implemented in Kotlin, a
statically typed language 100% interoperable with Java.
The front-end seen in Fig. 2 has been implemented using
PrimeFaces, a UI component framework for Java Server
Faces (JSF). It offers basic functionality such as the ability
for users to download available RPC schemas and to view
information about available FMUs in a structured way.

Figure 2. The discovery service’s web interface. Here available
FMUs are listed, showing network information and data from
the modelDescription.xml.

4.2 Proxy-server
Two server implementations have been realized, each de-
scribed more in detail below. Which one to deploy in pro-
duction depends on the users need for RPCs supported,
stability, stability, quality of the available ME solvers,
memory foot-print and performance. No one implemen-
tation will excel at everything.

4.2.1 JVM

The JVM implementations is written in Kotlin and rely on
FMI4j (Hatledal et al., 2018) for interacting with FMUs.
FMI4j supports FMI 2.0 for CS and ME. ME models can
be wrapped as CS ones using solvers from Apache Com-
mons Math.

The implementation supports Thrift (TPC/IP - binary,
HTTP - JSON), gRPC (HTTP2 - protocol buffers) as well
as JSON-RPC (HTTP, TCP/IP, WebSockets, ZeroMQ). Of

the two current implementations, this one is considered
the most stable and feature rich.

4.2.2 C++

The C++ implementation is cross-platform and is written
in C++17. All dependencies are available using the library
manager vcpkg, making it easy to build on any platform.
Currently, Thrift (TPC/IP - binary, HTTP - JSON) and
gRPC (HTTP2 - protocol buffers) are supported RPCs.

FMI4cpp (Hatledal, 2018) is used for interacting with
FMUs. It supports FMI 2.0 for CS and ME. ME mod-
els can be wrapped as CS ones using solvers from Boost
odeint.

4.3 Proxy-client
FMU-proxy comes bundled with client implementations
for C++, the JVM, Python and JavaScript. The two lat-
ter are crude and ought to be considered as proof of con-
cept. They are, however, bundled with the source code to
showcase how easy it is to interface with FMU-proxy from
new languages. A MATLAB demo using JSON-RPC over
HTTP is also available.

The C++ and JVM implementations are more elabo-
rate, providing a unified, higher level API for the users.
No matter which RPC is used, there is no difference be-
tween a remote and local FMU slave for the user. As il-
lustrated by Figure. 3, they all share the same interface,
defined by FMI4cpp and FMI4j for C++ and JVM imple-
mentations respectively. Assuming a tool is using one of
these FMI implementations, support for distributed execu-
tion can be seamlessly added with minimal changes to the
existing code base.

Figure 3. FMI4cpp and FMI4j’s slave interface could hide
slaves stemming from either an in-memory implementation or
an actual FMU. A slave in any language supported by the cho-
sen RPC could also be implemented directly behind the RPC
layer.

5 Conclusion and Future Work
In this paper an open-source framework for working with
FMUs across languages and platforms, named FMU-
proxy, has been presented. It has been designed to allow
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distributed execution of FMUs, which also enables access
to FMUs in previously unsupported languages and on in-
compatible platforms. Since FMU-proxy is independent
of the master algorithm, it can be re-used across software
projects.

Some features of FMU-proxy include:

• Brings FMI capabilities to previously unsupported
languages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI
compliant models can be implemented without hav-
ing to package them into FMUs.

• Allows code re-use between projects that requires
distributed execution of FMUs, independent of im-
plementation language.

• Enables companies to securely share FMUs. By
hosting their own proxy server and directory service,
neither the FMUs nor the knowledge about them
leaves the company controlled servers.

• A unified slave interface for C++ and JVM users. On
these platforms, local and remote slaves implement
the same interface.

Server implementations exists for C++ and the
JVM, while client implementations exists for JavaScript,
Python, C++ and the JVM. Due to the language inde-
pendent nature of the RPC frameworks and protocols
used, and especially the code-generation feature of se-
lected RPC frameworks, further client implementations in
additional languages require little effort.

Several enhancements to FMU-proxy is planned for the
future, including:

1. Automatic distribution of FMUs over the network.
It should be possible to upload an FMU to the Dis-
covery Service, which in turn should find a suitable
server for it to run on.

2. Manual distribution of FMUs over the network. It
should be possible for the user to directly upload an
FMU to an available proxy-server.

3. Publication of the C++ implementation to the cross-
platform C++ library manager vcpkg.

4. Benchmark results, comparing the different imple-
mentations, RPCs and local vs. distributed execution
of FMUs.

5. Once released, FMI 3.0 support will be added.

FMU-proxy is available from GitHub at
https://github.com/NTNU-IHB/FMU-proxy.
Here, pre-built server executables can be obtained. Client
libraries for Java are available through maven at https:
//jitpack.io/#NTNU-IHB/FMU-proxy, while
client libraries for C++ will be available through vcpkg.
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