
Session 6C: Tools 
 

84 Abstracts of the 13th International Modelica Conference 
 March 4-6, 2019, Regensburg, Germany 

OMJulia: An OpenModelica API for Julia-Modelica Interaction 
Lie, Bernt and Palanisamy, Arunkumar and Mengist, Alachew and Buffoni, Lena and Sjölund, Martin and 
Asghar, Adeel and Pop, Adrian and Fritzson, Peter 

  

OMJulia: An OpenModelica API for Julia-Modelica Interaction

Bernt Lie1, Arunkumar Palanisamy2, Alachew Mengist2, Lena Buffoni2, Martin Sjölund2, Adeel
Asghar2, Adrian Pop2, Peter Fritzson2

1University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no;
2Linköping University, Linköping, Sweden, Peter.Fritzson@liu.se

Abstract
Modelica is an object oriented, acausal equation-based
language for describing complex, hybrid dynamic mod-
els. From a control systems point of view, the support
of models with inputs and outputs is of particular im-
portance. About ten Modelica implementations exist, of
which most are commercial and two are open source; the
implementations have varying levels of tool functionality.
Many Modelica implementations have limited support for
model analysis. It is therefore of interest to integrate Mod-
elica tools with a powerful scripting and programming
language, such as Julia.

Julia is a modern and free language for scientific com-
puting. Julia has very good support for plotting, linear
algebra, random numbers/statistics, automatic differenti-
ation, optimization, machine learning, differential equa-
tions, signal processing, data frames, graph algorithms,
file handling/databases, etc. Although support for con-
trol tools is lacking compared to MATLAB, control pack-
ages are more developed and simpler to install than, e.g.,
in Python. In summary, integration of Modelica with Ju-
lia facilitates many needed analysis possibilities and can
speed up the development of effient simulation models.

A number of design choices for interaction between Ju-
lia and Modelica tools are discussed. The simplest ap-
proach is to interact via text strings of command code. A
more convenient approach is to use an API in Julia (the
script tool) which hides the interaction code details. For
simulation, both of these approaches lead to interaction
between Julia and compiled Modelica code, with some re-
sulting run-time overhead in the call. A third approach
could be to translate Modelica code into Julia code instead
of C code. The produced Julia code can then be included
in a Julia session, and can take advantage of Julia tools
with no run-time overhead for the simulation. A fourth
possibility is to utilize meta programming capabilities of
Julia and extend Julia with the possibilities of Modelica
(as in the Modia project). Some advantages and disadvan-
tages of the approaches are discussed.

In this paper, the second approach is taken, and Julia
package OMJulia is introduced with an API for interac-
tion between OpenModelica and Julia. Some discussion
of the reasoning behind the OMJulia design is given. The
API is based on a new class ModelicaSystem within pack-
age OMJulia, with systematic methods which operate on

instantiated models. OMJulia supports handling of FMU
and Modelica models, setting and getting model values, as
well as some model operations such as simulate and lin-
earize. Results are available in Julia for further analysis.

OMJulia is a further development of a previous
OMPython package; a key advantage of Julia over Python
is that Julia has better support for control engineering
packages. OMJulia represents a first effort to interface a
relatively complete Modelica tool to Julia, giving access
to an open source set-up for modeling and analysis, in-
cluding control synthesis, easily installable from a unified
package manager.

In addition to documenting OMJulia with some ba-
sic examples, slightly more advanced examples are in-
cluded to illustrate the possibilities of implementing dy-
namic models in OpenModelica and carry out control sys-
tems analysis in Julia. Because Python has poor design
for control systems analysis, Modelica-Julia interaction is
more intersting for control applications. The examples il-
lustrate use of Julia for linearization of Modelica models,
control analysis, controller synthesis, and comparison of
the control design.

Although not shown in the paper, the Modelica-Julia
integration makes it straightforward to do state estimation
(random number generators, linear algebra), test out op-
timal control and model predictive control (control sys-
tems package, optimization code), develop surrogate mod-
els (machine learning), carry out structural analysis (graph
theory algorithms), etc. Some of the methods take ad-
vantage of OpenModelica’s algorithm for translating DAE
models to state space models.

The Julia API/OMJulia makes it possible to utilize a
mature Modelica implementation (OpenModelica) out of
the box, and add tools that are not part of Modelica. The
approaches for tighter integration of Modelica with Julia
(Modelica-to-Julia translation, Modia) are, of course, also
interesting — tighter integration promises better perfor-
mance compared to the OMJulia approach. These tighter
integration approaches are currently limited in scope, but
are interesting developments for the near future. Key-
words: Modelica, FMI, FMU, OpenModelica, Julia, Julia
API, OMJulia


	Session 6C: Tools
	OMJulia: An OpenModelica API for Julia-Modelica Interaction


