
Session 3B: Language

 Abstracts of the 13th International Modelica Conference 41
 March 4-6, 2019, Regensburg, Germany

SESSION 3B: LANGUAGE

Modelica language extensions for practical non-monotonic modelling: on the need for selective
model extension
Bürger, Christoff

Modelica language extensions for practical non-monotonic

modelling: on the need for selective model extension

Christoff Bürger
1

1
 Dassault Systèmes AB, Sweden, Christoff.BUeRGER@3ds.com

Abstract
A Modelica language extension for structural non-

monotonic model variation is presented. It enables

selective model extension: the well-defined refinement

of models by deselecting components and connections

not of interest or inappropriate for a new design. The

need for such variations is explained by the example of

Modelica Synchronous, whose adaptation is suffering

from crosscutting synchronous decompositions that

cannot be anticipated when continuous models are

designed; instead, contradicting model structure has to

be removed when an actual sampling is desired.

Besides synchronous, further applications for selective

model extension are investigated using our prototype

implementation in Dymola.

Keywords: Modelica, model variation, synchronous

1 Introduction

Of key importance for Modelica is model variation

support, enabling simulation of design alternatives and

their step-wise refinement from idealistic prototypes to

physically-detailed solutions. To that end, Modelica

provides many different abstraction and variation

techniques, like model extension, replaceable

components, parameters and component modifications.

Having a strong heritage from object-oriented

programming however, Modelica’s model variation

constructs are monotonic with respect to model

structure because components, connections or

equations can only be added but not removed when

extending models. An unfortunately overlooked

consequence of flatting is however, that such a

structural-monotonic type-strictness, as known from

class inheritance in traditional strongly typed object-

oriented programming languages like Java or C++, is

not required in Modelica. In Modelica, models are

flattened before simulation. Flattening essentially

reduces the design space of a set of models to a fixed

number of instances according to a given

parameterization and replaces the resulting instances

with their corresponding fixed equation system. The

difference to traditional strongly typed object-oriented

programming is striking: all instances are known

before runtime, such that they can be statically

constructed. There exists no runtime control-flow in

Modelica that may cause different instantiations of

entities; dynamic dispatch is not required, ultimately

neglecting object-oriented polymorphism and the type-

system restrictions that typically come with it
1
. As a

consequence, Modelica’s current restriction that sub-

models must inherit all components and connections of

their base-models when extending – that model

extension must be monotonic with respect to model

structure – can be dropped.

Leveraging on this observation, the paper presents a

new Modelica-language extension for non-monotonic

modelling: selective model extension. Selective model

extension can be used to exclude components and

connections in a well-defined way from inheritance

when extending models. Its semantic can be fully

understood in terms of model-diagram edits, such that

tools can support a convenient graphical user interface

for structure-wise non-preserving model variation. The

main contribution of selective model extension

therefore is to enable unforeseen structural variability

without requiring deliberately prepared base-models.

The paper starts with an evaluation on the need for

non-monotonic model variation in Modelica (Section

2). To that end, the application of Modelica

Synchronous to refine continuous models for discrete

use-cases is chosen which requires non-monotonic

modeling to handle the crosscutting clock-partitions of

different synchronous designs. Based on the non-

monotonic modeling requirements elaborated

throughout that discussion, an exact syntax and

semantic for selective model extension is presented

(Section 3). A demonstration of general practical

modelling-benefits, not only for Modelica

Synchronous, follows (Section 4). A prototype

implementation in Dymola is used on a sophisticated

example taken from the Modelica Standard Library to

show how selective model extension enables model-

development along the lines of real engineering

processes – i.e., in terms of step-wise model variation

and adaptation – avoiding model variation

inconsistencies and artificial intermediate models

without physical meaning.

1Object-oriented languages typically require monotony of inheritance to

ensure the functionality of entities is well-defined for all usage-contexts,

independent of control-flows determining instantiation. If sub-classes

could drop base-class functionality – i.e., inheritance could be non-

monotonic – runtime errors are possible whenever base-class

functionality is called on sub-class objects. Static type-systems enforce
monotonic inheritance to avoid such errors in the first place.

	Session 3B: Language
	Modelica language extensions for practical non-monotonic modelling: on the need for selective model extension

