
Session 1C: FMI 1

20 Abstracts of the 13th International Modelica Conference
 March 4-6, 2019, Regensburg, Germany

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units
Hatledal, Lars Ivar and Zhang, Houxiang and Styve, Arne and Hovland, Geir

FMU-proxy: A Framework for Distributed Access to Functional
Mock-up Units

Lars Ivar Hatledal1 Houxiang Zhang1 Arne Styve2 Geir Hovland3

1Department of Ocean Operations and Civil Engineering, NTNU, Norway, {laht,hozh}@ntnu.no
2Department of ICT and Natural Sciences, NTNU, Norway, asty@ntnu.no

3Department of Engineering Sciences, UiA, Norway, geir.hovland@uia.no

Abstract
The main goal of the Functional Mock-up Interface (FMI)
standard is to allow simulation models to be shared across
tools. To accomplish this, FMI relies on a combination
of XML-files and compiled C-code packaged in a zip
archive. This archive is called an Functional Mock-up
Unit (FMU) and uses the extension .fmu. In theory, an
FMU can support multiple platforms, however this is not
always the case and depends on the type of binaries the
exporting tool was able to provide. Furthermore, a library
providing FMI support may not be available in a particular
language, and/or it may not support the whole standard.
Another issue is related to the protection of Intellectual
Property (IP). While an FMU is free to only provide the
C-code in binary form, other resources shipped with the
FMU may be unprotected.

In order to overcome these challenges, this paper
presents FMU-proxy, an open-source framework for ac-
cessing FMUs across languages and platforms. This is
done by wrapping one or more FMUs behind a server pro-
gram supporting multiple language independent Remote
Procedure Call (RPC) technologies over several network
protocols. Currently, Apache Thrift (TCP/IP, HTTP),
gRPC (HTTP/2) and JSON-RPC (HTTP, WebSockets,
TPC/IP, ZeroMQ) are supported. Together, they allow
FMUs to be invoked from virtually any language on any
platform. As users don’t have direct access to the FMU or
the resources within it, IP is more effectively protected.

The software architecture is shown in Fig. 1 and con-
sists of three main parts:

1. Discovery service(s) - Provides users with the re-
quired information needed to connect to a remote
FMU. Available FMUs can be listed through a web
page or be querying it through HTTP.

2. Server(s) - Exposes locally available FMUs through
one or more RPCs, possibly over several network
protocols. Optionally, publishes information to a dis-
covery service, making the server discoverable.

3. Clients - Interacts with the remote FMU(s), and may
be implementing in virtually any language.

Some features of FMU-proxy include:

Figure 1. Software Architecture

• Brings FMI capabilities to previously unsupported
languages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI
compliant models can be implemented without hav-
ing to package them into FMUs.

• Allows re-use of code between software projects that
requires distributed execution of FMUs, independent
of implementation language.

• Enables companies to securely share FMUs. By
hosting their own proxy server and directory service,
neither the FMUs nor the knowledge about them
leaves the company controlled servers.

Server implementations exists for C++ and the
JVM, while client implementations exists for JavaScript,
Python, C++ and the JVM. Due to the language inde-
pendent nature of the RPC frameworks and protocols
used, and especially the code-generation feature of se-
lected RPC frameworks, client implementations in other
languages require little effort.

FMU-proxy is available from GitHub at
https://github.com/NTNU-IHB/FMU-proxy.
Here, pre-built server executables can be obtained. Client
libraries for Java are available through maven at https:
//jitpack.io/#NTNU-IHB/FMU-proxy, while
client libraries for C++ will be available through vcpkg.
Keywords: RPC, FMI, Co-simulation, Model Exchange

	Session 1C: FMI 1
	FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

